RESEARCH ON PARAMETER ANALYSIS AND DESIGN OF TRANSMISSION LINE-ANTI-GALLOPING DAMPER SYSTEM
-
摘要: 针对目前覆冰导线舞动频发现状,提出了一种通过在导线靠近输电塔位置处设置阻尼器来减振耗能从而实现输电线路舞动抑制的方法。基于Hamilton原理运用多阶伽辽金函数推导得到了导线-阻尼器系统的广义运动方程,并以某750 kV单档八分裂输电线路为例进行运动方程特征值分析,得到了导线-阻尼器系统的动力特性,探索了导线的垂度参数、阻尼器安装位置、阻尼系数及刚度系数等对系统等效阻尼比的影响,阻尼器安装位置越靠近跨中,系统的最大阻尼比提升效果越明显,两侧对称安装阻尼器可以有效地减小最优阻尼系数。采用数值算例和有限元数值仿真技术比较了粘滞阻尼器与负刚度阻尼器(NSD)对导线系统的减振效果,并针对NSD提出了参数的优化设计方法。研究表明:相比传统阻尼器,NSD可以在较低阻尼系数下有效地提高系统各阶的最大阻尼比,且能够明显降低导线系统的自振频率;系统所能达到的一阶最大阻尼比对NSD安装位置的变化不敏感;通过有限元仿真证实了,基于NSD的输电导线阻尼器设置方案相较于传统阻尼器方案具有更好的防舞性能。Abstract: In view of the current frequent occurrence of iced conductors galloping, a method for suppressing galloping of transmission lines is proposed, which is achieved by installing dampers at a position where the conductor is close to the transmission tower to reduce vibration and increase energy consumption. Based on the Hamilton principle, the generalized motion equation of the conductor-damper system is derived using multi-order Galerkin functions. Taking a 750 kV single-span 8-bundled transmission line as an example, the eigenvalue analysis of the motion equation is carried out, and the dynamic characteristics of conductor-damper system are obtained. The influence of conductor sag parameters, damper installation position, damping coefficient and stiffness coefficient on the equivalent damping ratio of the system is explored. The closer the installation position of the damper to the middle of the span, the more obvious the improvement effect of the maximum damping ratio of the system; and the symmetrical installation of the damper can effectively reduce the optimal damping coefficient. Numerical examples and finite element numerical simulations are used to compare the vibration damping effects between traditional viscous dampers and negative stiffness dampers (NSD) on the conductor system, and a parameter optimization design method is proposed for NSD. Research shows that, compared with traditional viscous dampers, NSD can effectively increase each order’s maximum damping ratio of the system at a lower damping coefficient, and significantly reduce the natural frequency of the system as well. The maximum first-order damping ratio is not sensitive to the change of the installation position of NSD. The finite element simulation proves that the NSD has better anti-galloping performance than traditional viscous damper schemes.
-
Key words:
- transmission line /
- NSD /
- equivalent damping ratio /
- anti-galloping /
- numerical simulation /
- eigenvalue
-
表 1 子导线物理参数表
Table 1. Physical parameters of sub-conductors
参数 数值 裸导线直径D/m 0.03 分裂半径R/m 0.5226 初始阻尼比ξy, ξz, ξθ/(%) 0.22/0.22/1.42 轴向刚度AE/kN 34 560 裸导线线密度ρ/(kg/m) 1.68 覆冰最大厚度hice/mm 10/15/20/25/30 额定拉断力Tmax/kN 128.10 转动惯量I/(kg·m2/m) 0.001 59 y轴静距Sy/(kg·m/m) 0.00 z轴静矩Sz/(kg·m/m) 0.0035 注:转动惯量、y轴静距、z轴静距均为单位长度的物理量。 表 2 防舞阻尼器设计参数
Table 2. Design parameters of anti-galloping damper
设计参数 粘滞阻尼器 NSD 刚度/(N/m) 0
7120−8000 阻尼/(N·s/m) 4160 安装位置/m xd1=xd2=L/10 -
[1] 霍冰, 刘习军, 张素侠. 相邻档距作用下覆冰导线舞动的复杂运动响应[J]. 工程力学, 2016, 33(5): 249 − 256. doi: 10.6052/j.issn.1000-4750.2014.09.0819HUO Bing, LIU Xijun, ZHANG Suxia. Complex response of galloping for an iced transmission line considering excitation of adjacent span [J]. Engineering Mechanics, 2016, 33(5): 249 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.09.0819 [2] ZHOU A Q, LIU X J, ZHANG S X, et al. Wind tunnel test of the influence of an interphase spacer on the galloping control of iced eight-bundled conductors [J]. Cold Regions Science and Technology, 2018, 155: 354 − 366. doi: 10.1016/j.coldregions.2018.08.026 [3] 楼文娟, 孙珍茂, 许福友, 等. 输电导线扰流防舞器气动力特性风洞试验研究[J]. 浙江大学学报: 工学版, 2011, 45(1): 93 − 98.LOU Wenjuan, SUN Zhenmao, XU Fuyou, et al. Experimental study on aerodynamic characteristics of air flow spoiler [J]. Journal of Zhejiang University: Engineering Science, 2011, 45(1): 93 − 98. (in Chinese) [4] HAVARD D G, POHLMAN J C. Five years' field trials of detuning pendulums for galloping control [J]. IEEE Transactions on Power Apparatus and Systems, 1984, 103(2): 318 − 327. [5] 刘连光, 赵强, 刘自发, 等. 线夹回转式导线阻尼间隔棒防舞机理与模态分析[J]. 电力建设, 2014, 35(3): 74 − 78. doi: 10.3969/j.issn.1000-7229.2014.03.014LIU Lianguang, ZHAO Qiang, LIU Zifa, et al. Anti-galloping mechanism and modal analysis on rotary clamp conductor spacer-damper [J]. Electric Power Construction, 2014, 35(3): 74 − 78. (in Chinese) doi: 10.3969/j.issn.1000-7229.2014.03.014 [6] LOU W J, HUANG C R, HUANG M F, et al. An aerodynamic anti-galloping technique of iced 8-bundled conductors in ultra-high-voltage transmission lines [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2019, 193: 103972. [7] 葛江锋. 分裂导线线夹回转式间隔棒防舞效果的数值仿真研究 [D]. 北京: 华北电力大学, 2015.GE Jiangfeng. Research on numeral simulation on anti-galloping effect of rotary clamp conductor spacer [D]. Beijing: North China Electric Power University, 2015. (in Chinese) [8] 霍冰, 刘习军, 张锐. 高阶扭转模态耦合下覆冰导线的稳定性和影响因素分析[J]. 工程力学, 2020, 37(2): 250 − 258. doi: 10.6052/j.issn.1000-4750.2019.01.0093HUO Bing, LIU Xijun, ZHANG Rui. Stability and influence factors on iced conductor with the participation of multi-ordered torsional modes [J]. Engineering Mechanics, 2020, 37(2): 250 − 258. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.01.0093 [9] 梁洪超. 覆冰导线全攻角舞动特性及基于阻尼减振技术的防舞研究 [D]. 杭州: 浙江大学, 2019.LIANG Hongchao. Galloping characteristics of iced conductor in full angle of attack range and anti-galloping research based on vibration damping technology [D]. Hangzhou: Zhejiang university, 2019. (in Chinese) [10] ZHOU L S, YAN B, ZHANG L, et al. Study on galloping behavior of iced eight bundle conductor transmission lines [J]. Journal of Sound and Vibration, 2016, 362: 85 − 101. doi: 10.1016/j.jsv.2015.09.046 [11] LOU W J, HUANG C R, HUANG M F, et al. Galloping suppression of iced transmission lines by viscoelastic-damping interphase spacers [J]. Journal of Engineering Mechanics, 2020, 146 (12): 04020135. [12] 陈立群, 刘延柱. 非线性振动 [M]. 北京: 高等教育出版社, 2001.CHEN Liqun, LIU Yanzhu. Nonlinear vibration [M]. Beijing: Higher Education Press, 2001. (in Chinese) [13] LOU W J, WU D G, XU H W, et al. Galloping stability criterion for 3-DOF coupled motion of an ice-accreted conductor [J]. Journal of Structural Engineering, 2020, 146(5): 04020071. doi: 10.1061/(ASCE)ST.1943-541X.0002601 [14] YAN Z M, YAN Z T, LI Z L, et al. Nonlinear galloping of internally resonant iced transmission lines considering eccentricity [J]. Journal of Sound and Vibration, 2012, 331(15): 3599 − 3616. doi: 10.1016/j.jsv.2012.03.011 [15] GB 50545−2010, 110 kV~750 kV架空输电线路设计规范 [S]. 北京: 中国计划出版社, 2010.GB 50545−2010, Code for design of 110 kV~750 kV overhead transmission line [S]. Beijing: China Jihua Press, 2010. [16] 陈水生, 孙炳楠, 胡隽. 粘弹性阻尼器对斜拉桥拉的振动控制研究[J]. 土木工程学报, 2002, 35(6): 59 − 65.CHEN Shuisheng, SUN Bingnan, HU Juan. Simulation of anti-galloping device's application in UHV transmission line [J]. China Civil Engineering Journal, 2002, 35(6): 59 − 65. (in Chinese) [17] 陈洋洋, 陈凯, 谭平, 等. 负刚度非线性能量阱减震控制性能研究[J]. 工程力学, 2019, 36(3): 159 − 168.CHEN Yangyang, CHEN Kai, TAN Ping, et al. A study on structural seismic control performance by nonlinear energy sinks with negative stiffness [J]. Engineering Mechanics, 2019, 36(3): 159 − 168. (in Chinese) [18] 纪晗, 熊世树, 袁涌, 等. 基于负刚度原理的结构减震效果理论分析[J]. 振动与冲击, 2019, 36(3): 159 − 168.JI Han, XIONG Shishu, YUAN Yong, et al. Influence analysis of the structural seismic reduction effect based on negative stiffness principle [J]. Journal of Vibration and Shock, 2019, 36(3): 159 − 168. (in Chinese) [19] 刘亚坤, 李林锐, 李世龙, 等. 架空输电线路的舞动幅值分析与试验研究[J]. 上海交通大学学报, 2016, 50(6): 825 − 830.LIU Yakun, LI Linrui, LI Shilong, et al. Analysis and experiment on galloping amplitude of transmission lines [J]. Journal of Shanghai Jiao Tong University, 2016, 50(6): 825 − 830. (in Chinese) -