RESEARCH ON DAMAGE CONSTITUTIVE MODEL OF ENGINEERED CEMENTITIOUS COMPOSITES UNDER UNIAXIAL TENSION
-
摘要: 通过单轴拉伸试验,讨论了PVA纤维体积掺入量和水胶比对工程用水泥基复合材料(ECC)受拉力学性能参数(开裂应变、开裂应力、峰值应变、峰值应力、极限应变以及应力-应变关系曲线)的影响规律。基于此,从损伤力学的角度讨论了ECC在单轴受拉过程的开裂前阶段、应变硬化阶段以及应变软化阶段的损伤演化机制。进而,基于ECC受拉损伤演化机制提出ECC受拉损伤本构模型,并给出模型相关参数的计算方法,分析表明:该文提出损伤模型得到的ECC受拉损伤演化曲线能更为合理的描述ECC的损伤演化全过程。最后,该文损伤模型计算的ECC受拉应力-应变关系曲线和试验曲线对比结果表明,所提出的模型能够合理的描述ECC受拉非线性应力-应变关系特征,且具有良好的精度。
-
关键词:
- 工程用水泥基复合材料 /
- 拉伸性能 /
- 损伤模型 /
- 应力-应变关系 /
- 非线性行为
Abstract: The effects of polyvinyl alcohol (PVA) fiber volume and water-binder ratio on tensile mechanical properties (cracking strain, cracking stress, peak strain, peak stress, ultimate strain and stress-strain relationship) of Engineered Cementitious Composites (ECC) were investigated through uniaxial tensile test. Based on test results, the damage evolution mechanism of ECC during the pre-cracking stage, strain hardening stage and strain softening stage of uniaxial tension process was discussed from the perspective of damage mechanics. Furthermore, based on the ECC tensile damage evolution mechanism, the ECC tensile damage constitutive model was proposed, and the calculation method of the model parameters was given. The analysis result shows that the ECC tensile damage evolution curve calculated by the proposed model can reflect the whole process of ECC damage more reasonably. Finally, Comparisons between the tensile stress-strain relationship curve calculated by the proposed model and the test curve demonstrate that the model can reasonably describe the nonlinear tensile stress-strain relationship of ECC and has good accuracy. -
表 1 ECC配合比
Table 1. ECC mix proportion
/kg 组号 水泥 砂 粉煤灰 微硅粉 水 PVA纤维 减水剂 A 1.000 0.500 2.000 0.073 0.860 0.029 0.041 B 1.000 0.500 2.000 0.073 0.860 0.044 0.041 C 1.000 0.500 2.000 0.073 0.738 0.057 0.041 D 1.000 0.500 2.000 0.073 0.768 0.057 0.041 E 1.000 0.500 2.000 0.073 0.860 0.057 0.041 注:PVA纤维密度为1300 kg/m3;ECC密度取2000 kg/m3。 表 2 试验结果
Table 2. Test results
组号 PVA纤维体
积掺量v水胶
比r开裂应
变εk/(%)开裂应力
σk/MPa峰值应
变εp/(%)峰值应力
σp/MPa极限应
变εu/(%)A 0.01 0.28 0.04 1.89 0.55 2.48 1.98 B 0.015 0.28 0.05 1.93 0.69 2.96 2.51 C 0.02 0.24 0.04 3.44 0.50 4.57 2.23 D 0.02 0.25 0.07 2.90 0.82 3.95 2.79 E 0.02 0.28 0.09 2.01 2.20 2.97 3.95 表 3 损伤模型系数
Table 3. damage model coefficients
组号 b A k B C A 0.941 0.199 0.195 0.123 −0.024 B 0.879 0.113 0.195 0.115 −0.002 C 0.915 0.197 0.127 0.005 0.010 D 0.863 0.107 0.150 0.063 −0.007 E 0.775 0.066 0.218 −0.709 0.982 表 4 验证组试验结果与损伤模型系数
Table 4. Test results and damage model coefficients of the verification groups
组号 PVA纤维
体积掺量v水胶
比r开裂应
变εk/(%)开裂应力
σk/MPa峰值应
变εp/(%)峰值应力
σp/MPa极限应
变εu/(%)VA 0.01 0.28 0.02 2.17 0.47 2.76 1.89 VB 0.015 0.28 0.03 2.48 0.86 3.06 2.53 VD 0.02 0.25 0.05 2.52 1.37 3.71 3.15 VE 0.02 0.28 0.07 2.54 2.01 3.35 4.02 表 5 验证组损伤模型系数b、A与计算值
Table 5. Comparison of b and A of the verification group with the calculated values
组号 损伤模型
系数b0实
测值损伤模型
系数b计
算值b0/b 损伤模型
系数A0实
测值损伤模型
系数A计
算值A0/A VA 0.993 0.949 1.046 0.216 0.194 1.113 VB 0.915 0.864 1.059 0.141 0.123 1.148 VD 0.880 0.872 1.009 0.122 0.115 1.057 VE 0.816 0.779 1.047 0.046 0.052 0.876 平均值 − − 1.04 − − 1.05 变异系数 − − 0.02 − − 0.12 -
[1] LI V C, WU C, WANG S X, et al. Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC) [J]. ACI Materials Journal, 2002, 99(5): 463 − 472. [2] LI L, CAI Z, YU K, et al. Performance-based design of all-grade strain hardening cementitious composites with compressive strengths from 40 MPa to 120 MPa [J]. Cement and Concrete Composites, 2019, 97: 202 − 217. doi: 10.1016/j.cemconcomp.2019.01.001 [3] YU K Q, DING Y, LIU J P, et al. Energy dissipation characteristics of all-grade polyethylene fiber-reinforced engineered cementitious composites (PE-ECC) [J]. Cement and Concrete Composites, 2020, 106: 1 − 11. doi: 10.1016/j.cemconcomp.2019.103459 [4] 李庆华, 徐世烺. 超高韧性水泥基复合材料基本性能和结构应用研究进展[J]. 工程力学, 2009, 26(增刊 2): 23 − 67.LI Qinghua, XU Shilang. Performance and application of ultra high toughness cementitious composite: a review [J]. Engineering Mechanics, 2009, 26(Suppl 2): 23 − 67. (in Chinese) [5] MAALEJ M, QUEK S T, AHMED S, et al. Review of potential structural applications of hybrid fiber Engineered Cementitious Composites [J]. Construction and Building Materials, 2012, 36: 216 − 227. doi: 10.1016/j.conbuildmat.2012.04.010 [6] 张远淼, 余江滔, 陆洲导, 等. ECC修复震损剪力墙抗震性能试验研究[J]. 工程力学, 2015, 32(1): 72 − 80. doi: 10.6052/j.issn.1000-4750.2013.07.0642ZHANG Yuanmiao, YU Jiangtao, LU Zhoudao, et al. Experimental test on aseismic behavior of damaged reinforced concrete shear wall repaired with ECC [J]. Engineering Mechanics, 2015, 32(1): 72 − 80. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.07.0642 [7] 邓明科, 樊鑫淼, 高晓军, 等. ECC面层加固受损砖砌体墙抗震性能试验研究[J]. 工程力学, 2015, 32(4): 120 − 129. doi: 10.6052/j.issn.1000-4750.2013.10.0938DENG Mingke, FAN Xingmiao, GAO Xiaojun, et al. Experimental investigation on seismic behavior of damaged brick masonry wall strengthened with ECC splint. [J]. Engineering Mechanics, 2015, 32(4): 120 − 129. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.10.0938 [8] 邓明科, 宋诗飞, 张敏, 等. 高延性混凝土加固钢筋混凝土梁受剪性能试验研究及承载力计算[J]. 工程力学, 2021, 38(9): 36 − 44, 63. doi: 10.6052/j.issn.1000-4750.2020.06.0381DENG Mingke, SONG Shifei, ZHANG Min, et al. Experimental study on shear behavior and capacity prediction of RC beams strengthened with high ductile concrete [J]. Engineering Mechanics, 2021, 38(9): 36 − 44, 63. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0381 [9] 袁方, 赵修远. FRP筋-钢筋增强ECC-混凝土组合柱抗震性能研究[J]. 工程力学, 2021, 38(8): 55 − 65, 144. doi: 10.6052/j.issn.1000-4750.2020.08.0532YUAN Fang, ZHAO Xiuyuan. Seismic behaviors of hybrid FRP-Steel reinforced ECC-Concrete composite columns [J]. Engineering Mechanics, 2021, 38(8): 55 − 65, 144. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0532 [10] LI V C. Performance driven design of fiber reinforced cementitious composites [C]. Swamy R N. Proceedings of 4th RILEM International Symposium on Fiber, Chapman, and Hall, 1992: 12 − 30. [11] KANDA T, LIN Z, LI V C. Tensile Stress-Strain Modeling of Pseudo strain Hardening Cementitious Composites [J]. Journal of Materials in Civil Engineering, 2000, 12(2): 147 − 156. doi: 10.1061/(ASCE)0899-1561(2000)12:2(147) [12] DENG M, YANG S. Experimental and numerical evaluation of confined masonry walls retrofitted with engineered cementitious composites [J]. Engineering Structures, 2020, 207: 1 − 23. doi: 10.1016/j.engstruct.2020.110249 [13] KABIR M I, LEE C K, RANA M M, et al. Flexural and bond-slip behaviors of engineered cementitious composites (ECC) encased steel composite beam [J]. Journal of Constructional Steel Research, 2019, 157(6): 229 − 244. [14] DAN M, HUANG T, ZHANG Y X, et al. Mechanical behavior of a polyvinyl alcohol fiber reinforced engineered cementitious composite (PVA-ECC) using local ingredients [J]. Construction and Building Materials, 2017, 141(15): 259 − 270. doi: 10.1016/j.conbuildmat.2017.02.158 [15] 池寅, 黄乐, 余敏. 基于ABAQUS的钢-聚丙烯混杂纤维混凝土损伤塑性本构模型取值方法研究[J]. 工程力学, 2017, 34(12): 131 − 142. doi: 10.6052/j.issn.1000-4750.2016.08.0630CHI Yin, HUANG Le, YU Min. Calibration method of damage plasticity model for steel-polypropylene hybrid fiber reinforced concrete based on ABAQUS [J]. Engineering Mechanics, 2017, 34(12): 131 − 142. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.08.0630 [16] RAZA A, KHAN Q, AHMAD A. Numerical Investigation of Load-Carrying Capacity of GFRP-Reinforced Rectangular Concrete Members Using CDP Model in ABAQUS [J]. Advances in Civil Engineering, 2019: 1 − 21. doi: 10.1155/2019/1745341 [17] ZHUANG H, WANG R, SHI P, et al. Seismic response and damage analysis of underground structures considering the effect of concrete diaphragm wall [J]. Soil Dynamics and Earthquake Engineering, 2019, 116(1): 278 − 288. [18] KRAHL P A, CARRAZEDO R, DEBS M E. Mechanical damage evolution in UHPFRC: Experimental and numerical investigation [J]. Engineering Structures, 2018, 170(1): 63 − 77. [19] HE R, CHEN S F, CONG P L, et al. Damage evolution model of strain hardening cementitious composites under the uniaxial stress state [J]. International Journal of Minerals Metallurgy and Materials, 2013, 20(2): 196 − 204. doi: 10.1007/s12613-013-0713-8 [20] CAI J, PAN J, TAN J, et al. Nonlinear finite-element analysis for hysteretic behavior of ECC-encased CFST columns [J]. Structures, 2020, 25: 670 − 682. doi: 10.1016/j.istruc.2020.03.036 [21] CHEN X M, DUAN J, QI H, et al. Controls on Material and Mesh for Structural Nonlinear Time-History Analysis [J]. Applied Mechanics and Materials, 2014, 580/581/582/583: 1564 − 1569. doi: 10.4028/www.scientific.net/AMM.580-583.1564 [22] HU Y C, TAN Y H, XI F. Failure assessment and virtual scenario reproduction of the progressive collapse of the FIU bridge [J]. Engineering Structures, 2021, 227: 1 − 13. doi: 10.1016/j.engstruct.2020.111423 [23] CHENG H, PAZ C M, PINHEIRO B C, et al. Experimentally based parameters applied to concrete damage plasticity model for strain hardening cementitious composite in sandwich pipes [J]. Materials and Structures, 2020, 53(4): 1 − 17. [24] HAN T S, FEENSTRA P H, BILLINGTON S L. Simulation of highly ductile fiber-reinforced cement based composite components under cyclic loading [J]. ACI Structural Journal, 2003, 100(6): 749 − 757. [25] 江世永, 龚宏伟, 姚未来, 等. ECC材料力学性能与本构关系研究进展[J]. 材料导报, 2018, 32(23): 4192 − 4204. doi: 10.11896/j.issn.1005-023X.2018.23.021JIANG Shiyong, GONG Hongwei, YAO weilai, et al. A survey on mechanical behavior and constitutive model of engineered cementitious composite [J]. Materials Reports, 2018, 32(23): 4192 − 4204. (in Chinese) doi: 10.11896/j.issn.1005-023X.2018.23.021 -