A DETAILED NUMERICAL ANALYSIS FOR THE PROGRESSIVE COLLAPSE OF CONCRETE FRAME SUBSTRUCTURES STRENGTHENED WITH FRP STRIPS
-
摘要: 外贴FRP布加固是一种有效提高既有建筑抗连续倒塌性能的手段,但现有FRP布加固方式存在降低结构抗震性能、加固施工不便等缺点。该文采用数值模拟方法分析了FRP布加固方式对现浇和装配式混凝土框架子结构抗连续倒塌与抗震性能的影响,并开展了优化方案研究。基于通用有限元软件LS-DYNA建立了FRP布加固混凝土框架子结构的连续倒塌精细数值模型,其中混凝土、钢筋与FRP布分别采用实体、梁与壳单元进行模拟,考虑了FRP布和钢筋的滑移、新旧混凝土界面的粘结失效和机械套筒处的钢筋截面损失。试验验证表明该方法可准确模拟试验试件的破坏模式和承载力发展。分析试验试件的不同粘贴方案结果发现:对现浇混凝土子结构,梁底与梁侧中性轴粘贴纵向FRP布并在梁端塑性铰区粘贴U形横向FRP布后,小变形下的结构倒塌抗力提升有限(最大仅2.6%)、基本不影响结构抗震性能,而对大变形下的结构倒塌抗力提升幅度可达49.5%;对于装配式混凝土子结构,在梁底、梁顶与梁侧底部外贴纵向布并在梁端塑性铰区粘贴U形横向FRP布可将小变形和大变形下的结构抗力最大提升24.2%和48.1%,使得装配式子结构在小变形下受力等同现浇结构,提升了原装配式子结构的抗震性能。对上述最优方案进一步的分析表明:保持FRP布用量不变而将塑性铰区内U形横向FRP布的分布范围和条数增加可提高大变形下的结构倒塌抗力,而不影响小变形下的加固效果。Abstract: Externally bonded FRP strips can effectively improve the progressive collapse-resisting performance of existing structures, but the seismic performance of structures and the ease of construction were not taken into consideration in existing FRP strengthening schemes. Numerical simulation was performed to study the influences of strengthening schemes using FRP strips on the seismic and progressive collapse-resisting behavior of cast-in-site and precast concrete frame substructures, by which the strengthening schemes were consequently optimized. The detailed numerical models of concrete frame substructures strengthened with FRP strips were established using the general finite element (FE) software LS-DYNA, in which the concrete, steel reinforcement and FRP strips were simulated by solid, beam and shell elements, respectively. The bond-slip of steel bars and FRP strips, the bond failure between precast and cast-in-site concrete and the loss of cross-sectional areas of bars at the mechanical sleeves were considered in the numerical models. The numerical models were validated by experimental results, which showed that the failure modes and the strengths of the substructures in the experiment were well captured by the numerical models. The results of the different strengthening schemes suggested that the bonding of the longitudinal FRP strips at the beam bottoms and the neutral axes of beam sides and U-shaped transverse FRP strips in the plastic hinge regions of the beams hardly improved the structural collapse resistances under small deformations for cast-in-site concrete substructures (the maximum percentage increase was only 2.6%). Such a strengthening scheme had almost no effect on the seismic performance of the substructures, while the progressive collapse resistance under large deformations was increased by at most 49.5%. For precast concrete substructures, applying longitudinal FRP strips at the beam tops, beam bottoms and bottoms of the beam sides and U-shaped transverse FRP strips in the plastic hinge regions would improve their maximum resistance under small and large deformations by at most 24.2% and 48.1%, respectively. Under small deformations, their collapse resistance was increased to the same level as cast-in-place ones, which was advantageous for improving the seismic performance of precast concrete substructures. A further analysis of the aforementioned optimal schemes shows that keeping the amount of FRP unchanged and at the same time increasing the covering length and the number of U-shaped transverse FRP strips applied in the plastic hinge regions of the beams could improve the structural collapse resistance under large deformation, while the effect of FRP strengthening on the collapse resistances under small deformation remained unchanged.
-
表 1 试件材料信息 (RC1和FRP)
Table 1. Material details of substructures (RC1 and FRP)
混凝土等级 加密区 非加密区 上侧纵筋 下侧纵筋 箍筋 上侧纵筋 下侧纵筋 箍筋 C30 3 2 2 2 表 2 试件材料信息 (RC2和PCWC)
Table 2. Material details of substructures (RC2 and PCWC)
加密区 非加密区 上侧/下侧纵筋 箍筋 上侧/下侧纵筋 箍筋 3 2 表 3 FRP加固方式(现浇子结构)
Table 3. FRP strengthening methods (RC substructures)
加固方式 纵向FRP布 横向FRP布 方式1 (SI1) 梁底+梁侧中性轴 间隔100 mm,环形封闭 方式2 (SI2) 梁端塑性铰区,环形封闭 方式3 (SI3) 间隔100 mm,U形不封闭 方式4 (SI4) 梁端塑性铰区,U形不封闭 表 4 承载力对比 (现浇子结构)
Table 4. Comparison of structural strengths (RC substructures)
试件 小变形 大变形 峰值/kN 提升率/(%) 峰值/kN 提升率/(%) 极限变形/mm FRP 37.8 20.7 38.3 5.2 379.6 RC1-SI1 34.5 10.2 61.3 68.3 534.3 RC1-SI2 31.7 1.3 54.7 50.3 513.1 RC1-SI3 33.4 6.7 55.6 52.7 525.7 RC1-SI4 31.6 0.9 54.4 49.5 500.0 RC2-SI1 60.4 10.8 104.0 23.8 814.0 RC2-SI2 56.6 3.8 99.0 17.9 792.2 RC2-SI3 56.3 3.3 97.2 15.7 738.0 RC2-SI4 55.9 2.6 94.6 12.6 728.1 表 5 FRP承载力贡献 (现浇子结构)
Table 5. Contribution of FRP to structural strengths (RC substructures)
/kN 试件 小变形峰值 大变形峰值 梁侧 梁底 总计 梁侧 梁底 总计 RC1-SI1 1.1 1.3 2.4 9.1 6.7 15.8 RC1-SI2 0.5 0.6 1.1 6.5 8.1 14.6 RC1-SI3 0.5 0.7 1.2 6.8 7.5 14.3 RC1-SI4 0.4 0.5 0.9 5.9 7.8 13.7 RC2-SI1 0.9 4.5 5.4 9.9 9.5 19.4 RC2-SI2 1.0 2.6 3.6 8.0 5.2 13.2 RC2-SI3 0.3 2.9 3.2 8.3 4.6 12.9 RC2-SI4 0.5 0.7 1.2 5.4 6.0 11.4 表 6 FRP加固方式 (装配式子结构)
Table 6. FRP strengthening methods (PC substructure)
加固方式 梁侧纵向FRP布 横向FRP布 方式1 (DI1) 距离梁底100 mm~200 mm 梁端塑性铰区
U形不封闭方式2 (DI2) 距离梁底0 mm~100 mm 方式3 (DI3) 距离梁底0 mm~200 mm 表 7 承载力对比 (装配式子结构)
Table 7. Comparisons of structural strengths (PC substructure)
试件 小变形 大变形 峰值/kN 提升率/(%) 峰值/kN 提升率 PCWC 45.9 − 58.0 − RC2 54.6 − 84.0 − PCWC-DI1 49.7 8.3 66.6 5.7 PCWC-DI2 53.8 17.2 83.0 43.1 PCWC-DI3 57.0 24.2 85.9 48.1 表 8 FRP承载力贡献 (装配式子结构)
Table 8. Contribution of FRP to structural strengths (PC substructure)
/kN 试件 小变形峰值 大变形峰值 梁侧 梁顶底 总计 梁侧 梁顶底 总计 PCWC-DI1 0.6 1.5 2.1 0.8 10.1 10.9 PCWC-DI2 4.8 1.1 5.9 8.4 20.1 28.5 PCWC-DI3 9.0 1.5 10.5 8.9 19.8 28.7 表 9 横向U形FRP布参数
Table 9. Parameters of U-shaped transverse FRP strips
名称 约束范围 条数(宽度) 梁侧长度 H 1(H/4) 取值 5H/4 H−L/30 2H 2(H/8) 注:H与L分别代表梁高与梁跨度。 表 10 承载力对比 (参数优化)
Table 10. Comparison of structural strengths (parameter optimization)
加固方式 RC1 RC2 PCWC 峰值/kN 提升率/(%) 峰值/kN 提升率/(%) 峰值/kN 提升率/(%) 1 (2H2) 54.7 50.3 104.3 24.3 86.6 49.3 2 (2H1) 53.7 47.6 103.7 23.6 85.0 46.6 3 (5/4H2) 50.3 38.2 96.0 14.4 81.7 40.9 4 (5/4H1) 46.8 28.6 94.6 12.8 81.2 40.0 5 (1H2) 49.3 35.4 96.3 14.8 79.6 37.2 6 (1H1) 46.3 27.2 89.0 6.1 79.7 37.4 注:方式简称的第1、2个数字分别代表分布范围与梁高之比、FRP条数。如,2H2代表梁端2倍梁高范围内粘贴2条横向FRP。 表 11 FRP峰值贡献 (参数优化)
Table 11. Contribution of FRP to peak loads (parameter optimization)
/kN 加固方式 RC1 RC2 PCWC 梁侧/底 总计 梁侧/底 总计 梁侧/顶底 总计 2H2 7.3/6.8 14.1 11.1/7.4 18.5 4.9/25.0 29.9 2H1 7.1/5.2 13.3 9.3/7.7 18.0 6.3/22.8 29.1 5/4H2 5.2/4.8 10.0 8.8/7.9 16.7 5.9/22.3 28.2 5/4H1 5.1/3.9 9.0 7.1/3.9 11.0 6.7/20.7 27.4 1H2 5.7/4.0 9.7 7.5/5.0 12.5 4.2/18.6 22.8 1H1 4.6/2.9 7.5 5.3/2.2 7.5 4.7/19.2 23.9 -
[1] ASCE/SEI 7-10, Minimum design loads for buildings and other structures [S]. Reston, Virginia: American Society of Civil Engineers, 2010. [2] DENG X F, LIANG S L, FU F, et al. Effects of high-strength concrete on progressive collapse resistance of reinforced concrete frame [J]. Journal of Structural Engineering, 2020, 146(6): 04020078. doi: 10.1061/(ASCE)ST.1943-541X.0002628 [3] YOUSEF A M, EL-MANDOUH M A. Dynamic analysis of high-strength concrete frame buildings for progressive collapse [J]. Case Studies in Construction Materials, 2020, 13: e00407. doi: 10.1016/j.cscm.2020.e00407 [4] YU J, TAN K H. Special detailing techniques to improve structural resistance against progressive collapse [J]. Journal of Structural Engineering, 2014, 140(3): 04013077. doi: 10.1061/(ASCE)ST.1943-541X.0000886 [5] LIN K Q, LU X Z, LI Y, et al. Analytical model for multi-hazard resilient prefabricated concrete frame considering earthquake and column removal scenarios [J]. Frontiers in Built Environment, 2018, 4: 73. doi: 10.3389/fbuil.2018.00073 [6] 余洋, 李治, 肖龙山, 等. 边柱失效后预应力拼接连接装配式结构抗连续倒塌机理研究[J]. 工程力学, 2021, 38(4): 159 − 168. doi: 10.6052/j.issn.1000-4750.2020.06.0366YU Yang, LI Zhi, XIAO Longshan, et al. Load resisting mechanism of precast structure underexterior column failure [J]. Engineering Mechanics, 2021, 38(4): 159 − 168. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0366 [7] QIAN K, HU H N, WENG Y H, et al. Numerical investigation on load transfer mechanism of bonded post-tensioned concrete beam-column substructures against progressive collapse [J]. Advances in Structural Engineering, 2021, 24(8): 1569 − 1582. doi: 10.1177/1369433220981655 [8] LI Z X, LIU H K, SHI Y C, et al. Experimental investigation on progressive collapse performance of prestressed precast concrete frames with dry joints [J]. Engineering Structures, 2021, 246: 113071. doi: 10.1016/j.engstruct.2021.113071 [9] FENG D C, SHI H R, PARISI F, et al. Efficient numerical model for progressive collapse analysis of prestressed concrete frame structures [J]. Engineering Failure Analysis, 2021, 129: 105683. doi: 10.1016/j.engfailanal.2021.105683 [10] QIANG H L, YANG J X, FENG P, et al. Kinked rebar configurations for improving the progressive collapse behaviours of RC frames under middle column removal scenarios [J]. Engineering Structures, 2020, 211: 110425. doi: 10.1016/j.engstruct.2020.110425 [11] LIU T, XIAO Y, YANG J, et al. CFRP strip cable retrofit of RC frame for collapse resistance [J]. Journal of Composites for Construction, 2017, 21(1): 04016067. doi: 10.1061/(ASCE)CC.1943-5614.0000722 [12] PAN J W, WANG X, WU F, et al. Strengthening of precast RC frame to mitigate progressive collapse by externally bonded CFRP sheets anchored with HFRP anchors [J]. Advances in Civil Engineering, 2018, 2018: 8098242. [13] ORTON S, JIRSA J O, BAYRAK O. Carbon fiber-reinforced polymer for continuity in existing reinforced concrete buildings vulnerable to collapse [J]. ACI Structrual Journal, 2009, 106(5): 608 − 616. [14] FENG P, QIANG H L, OU X, et al. Progressive collapse resistance of GFRP-strengthened RC beam–slab subassemblages in a corner column–removal scenario [J]. Journal of Composites for Construction, 2019, 23(1): 04018076. doi: 10.1061/(ASCE)CC.1943-5614.0000917 [15] QIAN K, LI B. Strengthening and retrofitting precast concrete buildings to mitigate progressive collapse using externally bonded GFRP strips [J]. Journal of Composites for Construction, 2019, 23(3): 04019018. doi: 10.1061/(ASCE)CC.1943-5614.0000943 [16] QIAN K, LI B. Strengthening and retrofitting of RC flat slabs to mitigate progressive collapse by externally bonded CFRP laminates [J]. Journal of Composites for Construction, 2013, 17(4): 554 − 565. doi: 10.1061/(ASCE)CC.1943-5614.0000352 [17] DoD2016, Design of structures to resist progressive collapse [S]. Washington D. C.: Department of Defense, 2016. [18] GSA2016, Alternate path analysis & design guidelines for progressive collapse resistance [S]. Washington D. C.: General Services Administration, 2016. [19] 钱爽, 范存新. 基于GFRP加固的RC梁柱结构抗连续倒塌性能研究[J]. 苏州科技大学学报 (工程技术版), 2019, 32(3): 43 − 50.QIAN Shuang, FAN Cunxin. Study on progressive collapse behavior of GFRP strengthened RC beam-column structures [J]. Journal of Suzhou University of Science and Technology (Engineering and Technology), 2019, 32(3): 43 − 50. (in Chinese) [20] ELSANADEDY H M, AL-SALLOUM Y A, ALRUBAIDI M A, et al. Upgrading of precast RC beam-column joints using innovative FRP/steel hybrid technique for progressive collapse prevention [J]. Construction and Building Materials, 2021, 268: 121130. doi: 10.1016/j.conbuildmat.2020.121130 [21] LIN K Q, LI Y, LU X Z, et al. Effects of seismic and progressive collapse designs on the vulnerability of RC frame structures [J]. Journal of Performance of Constructed Facilities, 2017, 31(1): 04016079. doi: 10.1061/(ASCE)CF.1943-5509.0000942 [22] YU J, LUO L Z, LI Y. Numerical study of progressive collapse resistance of RC beam-slab substructures under perimeter column removal scenarios [J]. Engineering Structures, 2018, 159: 14 − 27. doi: 10.1016/j.engstruct.2017.12.038 [23] 钱凯, 李治, 翁运昊, 等. 钢筋混凝土梁-板子结构抗连续性倒塌性能研究[J]. 工程力学, 2019, 36(6): 239 − 247. doi: 10.6052/j.issn.1000-4750.2018.05.0297QIAN Kai, LI Zhi, WENG Yunhao, et al. Behavior of RC beam-slab substructures to resist progressive collapse [J]. Engineering Mechanics, 2019, 36(6): 239 − 247. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.05.0297 [24] WENG Y H, QIAN K, FU F, et al. Numerical investigation on load redistribution capacity of flat slab substructures to resist progressive collapse [J]. Journal of Building Engineering, 2020, 29: 101109. doi: 10.1016/j.jobe.2019.101109 [25] MURRAY Y D, ABU-ODEH A, BLIGH R. Evaluation of LS-DYNA concrete material model 159 [R]. Cambridge, MA: Federal Highway Administration, 2007. [26] ELSANADEDY H M, AL-SALLOUM Y A, ALMUSALLAM T H, et al. Experimental and numerical study on FRP-upgraded RC beams with large rectangular web openings in shear zones [J]. Construction and Building Materials, 2019, 194: 322 − 343. doi: 10.1016/j.conbuildmat.2018.10.238 [27] 万军. 碳纤维布加固砌体填充墙抗近距离小当量炸药爆炸数值模拟研究[J]. 工程力学, 2020, 37(增刊 1): 82 − 90. doi: 10.6052/j.issn.1000-4750.2019.04.S012WAN Jun. Numerical simulation of CFRP reinforced concrete masonry wall against small stand-off distance explosive charge [J]. Engineering Mechanics, 2020, 37(Suppl 1): 82 − 90. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.04.S012 [28] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations [J]. Journal of Composite Materials, 1987, 21(9): 834 − 855. doi: 10.1177/002199838702100904 [29] 陆新征, 冯鹏, 叶列平. FRP布约束混凝土方柱轴心受压性能的有限元分析[J]. 土木工程学报, 2003, 36(2): 46 − 51. doi: 10.3321/j.issn:1000-131X.2003.02.009LU Xinzheng, FENG Peng, YE Lieping. Behavior of FRP-confined concrete square columns under uniaxial loading [J]. Civil Engineering Journal, 2003, 36(2): 46 − 51. (in Chinese) doi: 10.3321/j.issn:1000-131X.2003.02.009 [30] PHAM A T, TAN K H, YU J. Numerical investigations on static and dynamic responses of reinforced concrete sub-assemblages under progressive collapse [J]. Engineering Structures, 2017, 149: 2 − 20. doi: 10.1016/j.engstruct.2016.07.042 [31] PHAM A T, LIM A S, TAN K H. Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions [J]. Engineering Structures, 2017, 150: 520 − 536. doi: 10.1016/j.engstruct.2017.07.060 [32] fib, Fib model code for concrete structures [S]. Lausanne, Switzerland: International Federation for Structural Concrete, 2013. [33] LU X Z, TENG J G, YE L P, et al. Bond-slip models for FRP sheets/plates bonded to concrete [J]. Engineering Structures, 2005, 27(6): 920 − 937. doi: 10.1016/j.engstruct.2005.01.014 [34] 陆新征, 叶列平, 滕锦光, 等. FRP片材与混凝土粘结性能的精细有限元分析[J]. 工程力学, 2006, 23(5): 74 − 82. doi: 10.3969/j.issn.1000-4750.2006.05.014LU Xinzheng, YE Lieping, TENG Jinguang, et al. Meso-scale finite element analysis of FRP-to-concrete bond behavior [J]. Engineering Mechanics, 2006, 23(5): 74 − 82. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.05.014 [35] LSTC. LS-DYNA keyword user’s manual volume II material models [R]. Livermore, CA: United States Livemore, 2017. [36] 钱凯, 李治, 翁运昊, 等. 后浇整体式预制混凝土梁-板子结构抗连续倒塌机理研究[J]. 建筑结构学报, 2021, 42(7): 183 − 193.QIAN Kai, LI Zhi, WENG Yunhao, et al. Load resisting mechanism of precast concrete beam-slab substructures with monolithic joints to mitigate progressive collapse [J]. Journal of Building Structures, 2021, 42(7): 183 − 193. (in Chinese) [37] JGJ 107−2010, 钢筋机械连接技术规程 [S]. 北京: 中国建筑工业出版社, 2010.JGJ 107−2010, Technical specification for mechanical splicing of steel reinforcing bars [S]. Beijing: China Architecture and Building Press, 2010. (in Chinese) [38] JGJ 256−2011, 钢筋锚固板应用技术规程[S]. 北京: 中国建筑工业出版社, 2011.JGJ 256−2011, Technical specification for application of headed bars [S]. Beijing: China Architecture and Building Press, 2011. (in Chinese) [39] 秦卫红, 冯鹏, 施凯捷, 等. 玻璃纤维加固梁柱结构抗连续倒塌性能数值分析[J]. 同济大学学报 (自然科学版), 2014, 42(11): 1647 − 1653.QIN Weihong, FENG Peng, SHI Kaijie, et al. Numerical analysis of progressive collapse behavior of glass fiber reinforced polymer strengthened beam-column structures [J]. Journal of Tongji University (Natural Science), 2014, 42(11): 1647 − 1653. (in Chinese) [40] 袁鑫杰, 李易, 陆新征, 等. 湿式连接装配式混凝土框架抗连续倒塌静力试验研究[J]. 土木工程学报, 2019, 52(12): 46 − 56. doi: 10.15951/j.tmgcxb.2019.12.005YUAN Xinjie, LI Yi, LU Xinzheng, et al. Static progressive collapse test on prefabricated concrete frames with wet connections [J]. Civil Engineering Journal, 2019, 52(12): 46 − 56. (in Chinese) doi: 10.15951/j.tmgcxb.2019.12.005 [41] JGJ 1−2014, 装配式混凝土结构技术规程[S]. 北京: 中国建筑工业出版社, 2014.JGJ 1−2014, Technical specifications for prefabricated concrete structures [S]. Beijing: China Architecture and Building Press, 2014. (in Chinese) [42] GB 50010−2010, 混凝土结构设计规范[S]. 北京: 中国建筑工业出版社, 2010.GB 50010−2010, Code for design of concrete structures [S]. Beijing: China Architecture & Building Press, 2010. (in Chinese) -