EFFECT OF DYNAMIC FRICTION ON CRACK SURFACE ON DYNAMIC FAILURE OF BRITTLE MATERIALS
-
摘要: 基于岩石类材料的I型裂纹模型,提出了一种考虑裂纹密度、裂纹相互作用以及裂纹面动摩擦作用的脆性材料动力模型。以正方形阵列分布的裂纹为例,定量分析了不同裂纹密度及不同摩擦行为对试件的裂纹扩展过程、试件受力和破坏的影响。数值计算结果表明:随着裂纹密度增大,裂纹间的相互作用增强,试件破坏时的加载应力降低,惯性效应引起试件轴向附加应力增大。裂纹面的滑动会降低裂纹面的动摩擦系数,促进裂纹发展,并降低试件的强度。相对于常数摩擦系数,考虑速度及状态依赖型摩擦模型对裂纹面的滑动过程更为合理。动强度因子对比结果显示出试件明显的应变率效应和尺寸效应。Abstract: Based on the model of Mode I cracks for rock-like material, a dynamic model for rock-like materials is proposed, which considers the crack concentration, density effect and dynamic friction of cracks. Taking the crack distributed in the square array as an example, the effects of different crack density and friction behavior on the crack propagation process, stress and failure of the specimen are quantitatively analyzed. The numerical results show that: with the increase of crack density, the interaction between cracks increases, the loading stress decreases, and the inertia effect causes the axial additional stress of the specimen to increase. The sliding of the crack surface will reduce the dynamic friction coefficient of the crack surface, promote the crack development, and reduce the strength of the specimen. Compared with the constant friction coefficient, considering the velocity and state-dependent friction model is more reasonable for the sliding process of the cracked surface. The comparison results of dynamic strength factors show that the specimen display an obvious strain rate effect and a dynamic size effect of rock mass strength.
-
Key words:
- wing crack model /
- interaction of crack /
- crack density /
- dynamic friction /
- dynamic increase factors.
-
表 1 数值计算采用的参数
Table 1. List of the parameters for the numerical calculations
参数 数值 试件原始半径/mm 37 试件原始高度/mm 42 裂纹初始长度/mm 3 弹性模量E/GPa 17.2 单轴抗压强度/MPa 45 泊松比 0.19 密度/(kg/m) 2179 KI0/(MPa·m1/2) 0.56 ${c_{\text{R}}}$/(m/s) 1656 ${c_{\rm{P}}}$/(m/s) 2944 ${v_{\text{m}}}$/(m/s) 800 表 2 不同裂纹密度条件下启裂和破坏时刻以及相应的加载应力
Table 2. The moments of crack growth initiation, sample failure and corresponding loading stresses for different crack density
裂纹
密度裂纹相互
作用系数启裂时刻/
(×10−6 s)启裂时加载
应力/MPa破坏时刻/
(×10−6 s)破坏时加载
应力/MPa0.15 1.0008 64 3.46 124 199.18 0.30 1.0049 63 3.19 113 122.46 0.50 1.0254 62 3.19 99 50.62 0.70 1.0896 62 3.19 92 30.22 0.80 1.1595 61 2.93 88 22.21 0.90 1.2929 60 2.49 91 28.01 0.95 1.4218 59 2.29 88 22.21 -
[1] BRACE W F, BOMBOLAKIS E G. A note on brittle crack growth in compression [J]. Journal of Geophysical Research, 1963, 68(12): 3709 − 3713. doi: 10.1029/JZ068i012p03709 [2] FAIRHURST C, COOK N G W. The phenomenon of rock splitting parallel to the direction of maximum compression in the neighborhood of a surface [C]. Lisbon, Portugal: Proceedings of the 1st Congress on the International Society of Rock Mechanics, 1966: 687 − 692. [3] ASHBY M F, HALLAM N C. The failure of brittle solids containing small cracks under compressive stress states [J]. Acta Metallurgica, 1986, 34(3): 497 − 510. doi: 10.1016/0001-6160(86)90086-6 [4] ASHBY M F, SAMMIS C G. The damage mechanics of brittle solids in compression [J]. Pure and Applied Geophysics, 1990, 133(3): 489 − 521. doi: 10.1007/BF00878002 [5] HORII H, NEMAT-NASSER S. Compression-induced microcrack growth in brittle solids: axial splitting and shear failure [J]. Journal of Geophysical Research:Solid Earth, 1985, 90(4): 3105 − 3125. doi: 10.1029/JB090iB04p03105 [6] HORII H, NEMAT-NASSER S. Brittle failure in compression: splitting, faulting and brittle-ductile transition [J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1986, 1549(319): 337 − 374. [7] RENSHAW C E, SCHULSON E M. Universal behaviour in compressive failure of brittle materials [J]. Nature, 2001, 412(6850): 897 − 900. doi: 10.1038/35091045 [8] 姚池, 何忱, 蒋水华, 等. 脆性各向异性岩石破坏过程数值模拟[J]. 工程力学, 2019, 36(2): 96 − 103. doi: 10.6052/j.issn.1000-4750.2017.12.0915YAO Chi, HE Chen, JIANG Shuihua, et al. Numerical simulation of damage and failure process in anisotropic brittle rocks [J]. Engineering Mechanics, 2019, 36(2): 96 − 103. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.12.0915 [9] HUANG C, SUBHASH G. Influence of lateral confinement on dynamic damage evolution during uniaxial compressive response of brittle solids [J]. Journal of the Mechanics and Physics of Solids, 2003, 51(6): 1089 − 1105. doi: 10.1016/S0022-5096(03)00002-4 [10] BHAT H S, ROSAKIS A J, SAMMIS C G. A micromechanics based constitutive model for brittle failure at high strain rates [J]. Journal of Applied Mechanics, 2012, 79(3): 310161 − 3101612. [11] DESHPANDE V S, EVANS A G. Inelastic deformation and energy dissipation in ceramics: A mechanism-based constitutive model [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(10): 3077 − 3100. doi: 10.1016/j.jmps.2008.05.002 [12] KACHANOV M. A simple technique of stress analysis in elastic solids with many cracks [J]. International Journal of Fracture, 1985, 28(1): 11 − 19. doi: 10.1007/BF00033702 [13] KACHANOV M. Elastic solids with many cracks: A simple method of analysis [J]. International Journal of Solids and Structures, 1987, 23(1): 23 − 43. doi: 10.1016/0020-7683(87)90030-8 [14] KACHANOV M, LAURES J P. 3-Dimensional problems of strongly interacting arbitrarily located penny- shaped cracks [J]. International Journal of Fracture Mechanics, 1989, 41(4): 289 − 313. doi: 10.1007/BF00018861 [15] FABRIKANT V I. Close interaction of coplanar circular cracks under shear loading [J]. Computational Mechanics, 1989, 4(3): 181 − 197. doi: 10.1007/BF00296666 [16] FABRIKANT V I. Close interaction of coplanar circular cracks in an elastic medium [J]. Acta Mechanica, 1987, 67(1/2/3/4): 39 − 59. doi: 10.1007/BF01182121 [17] ZHENG D, LI Q B, WANG L B. A microscopic approach to rate effect on compressive strength of concrete [J]. Engineering Fracture Mechanics, 2005, 72(15): 2316 − 2327. doi: 10.1016/j.engfracmech.2005.01.012 [18] 李鹏飞, 朱其志, 顾水涛, 等. 岩石类材料裂隙形成和扩展的相场方法模拟[J]. 工程力学, 2018, 35(3): 41 − 48. doi: 10.6052/j.issn.1000-4750.2016.11.0899LI Pengfei, ZHU Qizhi, GU Shuitao, et al. A phase field method to simulate crack nucleation and crack propagation in rock-like materials [J]. Engineering Mechanics, 2018, 35(3): 41 − 48. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.11.0899 [19] 韩智铭, 刘庆宽, 王雪, 等. 岩体多裂纹扩展演化过程数值流形方法研究[J]. 工程力学, 2021, 38(增刊): 7 − 13. doi: 10.6052/j.issn.1000-4750.2020.05.S003HAN Zhiming, LIU Qingkuan, WANG Xue, et al. Study on numerical manifold method for evolution process of multi-crack propagation in rock mass [J]. Engineering Mechanics, 2021, 38(Suppl): 7 − 13. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S003 [20] QI C Z, XIA C, LI X Z, et al. Effect of inertia and crack propagation on dynamic strength of geologic-type materials [J]. International Journal of Impact Engineering, 2019, 133(11): 1 − 9. [21] 李永东, 张男, 唐立强, 等. 裂纹面摩擦接触引起的断裂韧性增长的研究[J]. 力学学报, 2005, 37(3): 280 − 286. doi: 10.3321/j.issn:0459-1879.2005.03.004LI Yongdong, ZHANG Nan, TANG Liqiang, et al. Researches on the enhancement of fracture toughness induced by friction between crack faces [J]. Acta Mechanica Sinica, 2005, 37(3): 280 − 286. (in Chinese) doi: 10.3321/j.issn:0459-1879.2005.03.004 [22] DOROGOY A, BANKS-SILLS L. Effect of crack face contact and friction on Brazilian disk specimens: A finite difference solution [J]. Engineering Fracture Mechanics, 2005, 72(18): 2758 − 2772. doi: 10.1016/j.engfracmech.2005.05.005 [23] 盖秉政, 王立清. 考虑裂纹面接触及摩擦的应力强度因子研究[J]. 黑龙江大学自然科学学报, 2008, 25(6): 731 − 749. doi: 10.3969/j.issn.1001-7011.2008.06.005GAI Bingzheng, WANG Liqing. The investigations of stress intensity factor taking crack surfaces with contact and friction into account [J]. Journal of Natural Science of Heilongjiang University, 2008, 25(6): 731 − 749. (in Chinese) doi: 10.3969/j.issn.1001-7011.2008.06.005 [24] 王立清, 盖秉政. 裂纹面接触摩擦对双-边裂纹板动态应力强度因子的影响[J]. 工程力学, 2009, 26(7): 7 − 11.WANG Liqing, GAI Bingzheng. Effect of crack face contact and friction on dynamic stress intensity factors for a double-edge cracked plate [J]. Engineering Mechanics, 2009, 26(7): 7 − 11. (in Chinese) [25] FORRESTAL M J, WRIGHT T W, CHEN W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2007, 34(3): 405 − 411. doi: 10.1016/j.ijimpeng.2005.12.001 [26] FREUND L B. Crack propagation in an elastic solid subjected general loading-III Stress wave loading [J]. Journal of the Mechanics and Physics of Solids, 1973, 21(2): 47 − 61. doi: 10.1016/0022-5096(73)90029-X [27] WANG H Y, DYSKIN A, PASTERNAK E, et al. Effect of the intermediate principal stress on 3-D crack growth [J]. Engineering Fracture Mechanics, 2018, 204: 404 − 420. doi: 10.1016/j.engfracmech.2018.10.024 [28] LEKESIZ H, KATSUBE N, ROKHLIN S I, et al. The stress intensity factors for a periodic array of interacting coplanar penny-shaped cracks [J]. International Journal of Solids and Structures, 2013, 50(1): 186 − 200. doi: 10.1016/j.ijsolstr.2012.09.018 [29] JAVED F, HAINZL S, AOUDIA A, et al. Modeling of kashmir aftershock decay based on static coulomb stress changes and laboratory-derived rate-and-state dependent friction law [J]. Pure & Applied Geophysics, 2016, 173(5): 1559 − 1574. [30] SINHA N, SINGH A K, SINGH T N. Dynamic stability of the rate, state, temperature, and pore pressure friction model at a rock interface [J]. Pure and Applied Geophysics, 2018, 176(11): 4969 − 4982. [31] HEIMISSON E R. Constitutive law for earthquake production based on rate-and-state friction: Theory and application of interacting sources [J]. Journal of Geophysical Research Solid Earth, 2019, 124(2): 1802 − 1821. doi: 10.1029/2018JB016823 [32] DI TORO, HAN G R, HIROSE T, et al. Fault lubrication during earthquakes [J]. Nature, 2011, 471(7339): 494 − 498. doi: 10.1038/nature09838 [33] GOLDSBY D L, TULLIS T E. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates [J]. Science, 2011, 334(6053): 216 − 218. doi: 10.1126/science.1207902 [34] SPAGNUOLO E, NIELSEN S, VIOLAY M, et al. An empirically based steady state friction law and implications for fault stability [J]. Geophysical Research Letter, 2016, 43(7): 3263 − 3271. doi: 10.1002/2016GL067881 [35] KOLARI K. A complete three-dimensional continuum model of wing-crack growth in granular brittle solids [J]. International Journal of Solids and structures, 2017, 115(6): 27 − 42. [36] ZHANG M, WU H J, Li Q M, et al. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests part I: Experiments [J]. International Journal of Impact Engineering, 2009, 36(12): 1327 − 1334. doi: 10.1016/j.ijimpeng.2009.04.009 [37] GROTE D L, PARK S W, ZHOU M. Dynamic behavior of concrete at high strain rate and pressure: I. experimental characterization [J]. International Journal of Impact Engineering, 2001, 25(9): 869 − 886. doi: 10.1016/S0734-743X(01)00020-3 [38] ROSS A, TEDESCO J W, KUENNEN S T. Effects of strain rate on concrete strength [J]. ACI Materials Journal, 1995, 92(1): 37 − 47. [39] QI C Z, WANG M Y, BAI J P, et al. Mechanism underlying dynamic size effect on rock mass strength [J]. International Journal of Impact Engineering, 2014, 68(6): 1 − 7. [40] KANAMORI H, ANDERSON D L, HEATON T H. Frictional melting during the rupture of the 1994 bolivian earthquake [J]. Science, 1998, 279(5253): 839 − 842. -