BAYESIAN-BASED NONLINEAR MODEL UPDATING AND DYNAMIC RELIABILITY ANALYSIS
-
摘要: 提出一种基于贝叶斯推理的非线性结构模型修正方法,同时考虑激励的随机性,建立了复合随机振动系统的动力可靠度分析方法。利用实测结构动力响应主分量的瞬时特征参数作为非线性指标构建似然函数,结合拒绝延缓自适应(Delayed Rejection and Adaptive Metropolis, DRAM)算法和高斯过程替代模型实现了非线性结构模型修正及其参数的不确定性量化。根据首次超越破坏准则,利用广义概率密度演化方法,分别对仅考虑激励随机性的确定性模型和同时考虑结构参数与激励不确定性的复合随机振动模型进行动力可靠度分析,并利用蒙特卡洛随机抽样方法验证了计算结果的准确性。研究结果表明:基于振动响应瞬时特征参数的贝叶斯推理方法能够快速、准确地实现结构的非线性模型修正及其参数的不确定性量化。与具有初始设计参数名义值的确定性模型相比,考虑参数不确定性的复合随机模型的动力可靠度总体偏低,因此,在结构安全评估中应考虑非线性模型参数不确定性的影响,使评估结果更加安全、可靠。Abstract: A Bayesian-based method for nonlinear model updating is proposed. Considering the randomness of excitation, a dynamic reliability analysis method of compound random vibration systems is established. The instantaneous characteristic parameters of the principal components decomposed from the measured structural dynamic response are considered as the nonlinear index that is applied to construct the likelihood function. The DRAM-Gaussian process model combined method is further performed for the uncertainty quantification of the calibrated model parameters. According to the first transcendental failure criterion, the generalized probability density evolution method is used to calculate the structural dynamic reliability. Both the deterministic nominal model and the compound random vibration system are considered. The accuracy of the calculated reliability is subsequently verified by Monte Carlo simulation. The results show that the Bayesian-based measured instantaneous characteristics can be used to quantify the uncertainty of the nonlinear model parameters with the advantages of high accuracy and efficiency. In addition, the dynamic reliability of the compound random model that considers the uncertainty of structural parameters is generally lower than that of the deterministic nominal model. Thus, it will make the evaluation results safer and more reliable by considering the effects of model parameters uncertainties in structural safety state assessment.
-
表 1 非线性Bouc-Wen模型参数的名义值
Table 1. Nominal value of nonlinear Bouc-Wen model parameters
参数 α A μ β/m−μ γ/m−μ 名义值 0.4 1.0 3.0 0.5 0.5 表 2 非线性Bouc-Wen模型参数修正结果
Table 2. Updated results of nonlinear Bouc-Wen model parameters
参数 名义值 DRAM MH 后验
均值变异
系数样本
接受率后验
均值变异
系数样本
接受率$ \alpha $ 0.4 0.39 0.031 0.47 0.38 0.074 0.28 A 1.0 1.02 0.012 0.39 1.05 0.038 0.11 $ \mu $ 3.0 2.98 0.040 0.51 2.96 0.084 0.14 $ \beta $/m−μ 0.5 0.51 0.024 0.46 0.51 0.032 0.29 $ \gamma $/m−μ 0.5 0.48 0.025 0.49 0.47 0.059 0.22 表 3 非线性结构模型修正结果
Table 3. Updated results of nonlinear model
参数 名义值 后验均值 变异系数 样本接受率 $ \mit\alpha $ 0.4 0.39 0.023 0.53 A 1.0 1.08 0.017 0.48 $ \mit\mu $ 3.0 2.97 0.026 0.65 $ \mit\beta $/m−μ 0.5 0.52 0.037 0.44 $ \mit\gamma $/m−μ 0.5 0.49 0.031 0.57 表 4 非线性模型随机参数与激励随机参数
Table 4. Random parameters of nonlinear model and excitation
随机参数 分布概型 均值 变异系数 $ \mit\alpha $ 正态分布 0.39 0.031 A 正态分布 1.02 0.012 $\mit\mu $ 正态分布 2.98 0.040 $ \mit\beta $/m−μ 正态分布 0.51 0.024 $ \mit\gamma $/m−μ 正态分布 0.48 0.025 PGA/g 正态分布 0.20 0.100 表 5 不同位移界限条件下结构动力可靠度对比
Table 5. Dynamic reliability for different displacement boundary conditions
界限值$ {x_{\lim }} $/m 动力可靠度R(t) 名义模型 复合随机模型 蒙特卡洛模拟 0.060 0.3766 0.2909 0.2946 0.070 0.8851 0.8163 0.8224 0.080 1.0000 0.9808 0.9852 0.085 1.0000 0.9994 0.9997 0.090 1.0000 1.0000 1.0000 表 6 不同速度界限条件下结构动力可靠度对比
Table 6. Comparison of dynamic reliability for different velocity boundary conditions
界限值$ {\dot x_{\lim }} $/(cm/s) 动力可靠度R(t) 名义模型 复合随机模型 蒙特卡洛模拟 20 0.4179 0.3453 0.3394 22 0.7818 0.5841 0.5803 24 0.9475 0.8512 0.8702 26 1.0000 0.9475 0.9413 28 1.0000 0.9997 0.9992 30 1.0000 1.0000 1.0000 -
[1] BECK J L, AU S K. Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation [J]. Journal of Engineering Mechanics, 2002, 128(4): 380 − 391. doi: 10.1061/(ASCE)0733-9399(2002)128:4(380) [2] 易伟建, 周云, 李浩. 基于贝叶斯统计推断的框架结构损伤诊断研究[J]. 工程力学, 2009, 26(5): 121 − 129.YI Weijian, ZHOU Yun, LI Hao. Damage assessment research on frame structure based on Bayesian statistical inference [J]. Engineering Mechanics, 2009, 26(5): 121 − 129. (in Chinese) [3] 刘纲, 罗钧, 秦阳, 等. 基于改进MCMC方法的有限元模型修正研究[J]. 工程力学, 2016, 33(6): 138 − 145. doi: 10.6052/j.issn.1000-4750.2014.10.0887LIU Gang, LUO Jun, QIN Yang, et al. A finite element model updating method based on improved mcmc method [J]. Engineering Mechanics, 2016, 33(6): 138 − 145. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.10.0887 [4] 张建新. 基于贝叶斯方法的有限元模型修正研究[D]. 重庆: 重庆大学, 2014.ZHANG Jianxin. Research on the modification of finite element model based on Bayesian method [D]. Chongqing: Chongqing University, 2014. (in Chinese) [5] WAN H P, REN W X. Stochastic model updating utilizing Bayesian approach and Gaussian process model [J]. Mechanical Systems and Signal Processing, 2016(70/71): 245 − 268. [6] XIN Y, HAO H, LI J, et al. Bayesian based nonlinear model updating using instantaneous characteristics of structural dynamic responses [J]. Engineering Structures, 2019, 183: 459 − 474. doi: 10.1016/j.engstruct.2019.01.043 [7] 蒋伟, 刘纲. 基于多链差分进化的贝叶斯有限元模型修正方法[J]. 工程力学, 2019, 36(6): 101 − 108. doi: 10.6052/j.issn.1000-4750.2018.04.0229JIANG Wei, LIU Gang. Bayesian finite element model updating method based on multi-chain differential evolution [J]. Engineering Mechanics, 2019, 36(6): 101 − 108. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.0229 [8] ZHENG Y, XU Y L, GU Q. Nonlinear model updating of a reinforced concrete pedestrian cable-stayed bridge [J]. Struct Control Health Monit, 2020, 27: e2487. [9] 刘佩. 基于贝叶斯理论的结构动力可靠度更新方法与分析[J]. 振动与冲击, 2015, 34(12): 29 − 34.LIU Pei. Structural dynamic reliability updating method based on Bayesian theorem [J]. Journal of Vibration and Shock, 2015, 34(12): 29 − 34. (in Chinese) [10] 刘强, 王妙芳. 基于首次超越破坏时间概率的结构动力可靠性分析[J]. 应用力学学报, 2019, 36(2): 480 − 484.LIU Qiang, WANG Miaofang. The reliability analysis of structures based on failure probability of first-passage time [J]. Chinese Journal of Applied Mechanics, 2019, 36(2): 480 − 484. (in Chinese) [11] 杨杰, 马萌璠, 王旭. 随机结构动力可靠度计算的条件概率方法[J]. 工程力学, 2018, 35(增刊 1): 17 − 21. doi: 10.6052/j.issn.1000-4750.2017.05.S030YANG Jie, MA Mengfan, WANG Xu. Conditional probability method for dynamic reliability calculation of random structures [J]. Engineering Mechanics, 2018, 35(Suppl 1): 17 − 21. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.05.S030 [12] LIU Y F, FAN X P. Dynamic reliability prediction for the steel box girder based on multivariate Bayesian dynamic Gaussian copula model and SHM extreme stress data [J]. Struct Control Health Monit, 2020, 27: e2531. [13] 周通, 彭勇波, 李杰. 结构可靠度分析的概率密度演化理论——自适应代理模型方法[J]. 振动工程学报, 2020, 33(5): 1035 − 1043. doi: 10.16385/j.cnki.issn.1004-4523.2020.05.018ZHOU Tong, PENG Yongbo, LI Jie. Structural reliability analysis using probability density evolution method and adaptive surrogate model [J]. Journal of Vibration Engineering, 2020, 33(5): 1035 − 1043. (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2020.05.018 [14] LI J, CHEN J B. Stochastic dynamics of structures [M]. New York: Wiley, 2010. [15] 翁顺, 朱宏平. 基于有限元模型修正的土木结构损伤识别方法[J]. 工程力学, 2021, 38(3): 1 − 16. doi: 10.6052/j.issn.1000-4750.2020.06.ST02WENG Shun, ZHU Hongping. Damage identification of civil structures based on finite element model updating [J]. Engineering Mechanics, 2021, 38(3): 1 − 16. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.ST02 [16] 韦来生. 贝叶斯统计[M]. 北京: 高等教育出版社, 2016.WEI Laisheng. Bayesian statistics [M]. Beijing: Higher Education Press, 2016. (in Chinese) [17] WU L, JI W, ABOURIZK S M. Bayesian inference with Markov chain Monte Carlo–based numerical approach for input model updating [J]. Journal of Computing in Civil Engineering, 2020, 34(1): 04019043. doi: 10.1061/(ASCE)CP.1943-5487.0000862 [18] HAARIO H, LAINE M, MIRA A, et al. DRAM: Efficient adaptive MCMC [J]. Statistics and Computing, 2006, 16(4): 339 − 354. doi: 10.1007/s11222-006-9438-0 [19] ZHOU K, TANG J. Structural model updating using adaptive multi-response Gaussian process meta-modeling [J]. Mechanical Systems and Signal Processing, 2021, 147: 107121. doi: 10.1016/j.ymssp.2020.107121 [20] LI X C, TING-KAM L W, RICKY T, et al. Scalable gradients for stochastic differential equations [C]// International Conference on Artificial Intelligence and Statistics, Valencia, PMLR, 2020: 3870 − 3882. [21] 万志强, 陈建兵. 数据稀缺与更新条件下基于概率密度演化-测度变换的认知不确定性量化分析[J]. 工程力学, 2020, 37(1): 34 − 42. doi: 10.6052/j.issn.1000-4750.2019.02.0047WAN Zhiqiang, CHEN Jianbing. Quantification of epistemic uncertainty due to data sparsity and updating based on the framework via synthesizing probability density evolution method and change of probability measure [J]. Engineering Mechanics, 2020, 37(1): 34 − 42. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.02.0047 [22] 杨家树, 陈建兵. 动力可靠度约束下基于概率测度变换-全局收敛移动渐近线法的结构优化设计[J]. 振动工程学报, 2022, 35(1): 72 − 81.YANG Jiashu, CHEN Jianbing. Structural optimization under dynamic reliability constraints bu synthesizing change of probability measure and globally convergent method of moving asymptotes [J]. Journal of Vibration Engineering, 2022, 35(1): 72 − 81. (in Chinese) [23] 杨伟军, 张振浩. 基于连续Markov过程首超时间概率分析的结构动力可靠性研究[J]. 工程力学, 2011, 28(7): 124 − 129.YANG Weijun, ZHANG Zhenhao. Structural dynamic reliability study based on the probability analysis of first-passage time of continuous markov process [J]. Engineering Mechanics, 2011, 28(7): 124 − 129. (in Chinese) [24] WANG Z C, CHEN G. Analytical mode decomposition with Hilbert transform for modal parameter identification of buildings under ambient vibration [J]. Engineering Structures, 2014, 59: 173 − 184. doi: 10.1016/j.engstruct.2013.10.020 -