RESEARCH AND SOFTWARE IMPLEMENTATION OF ENERGY BAND STRUCTURE ANALYSIS ALGORITHM OF PHONONIC CRYSTALS BASED ON SiPESC PLATFORM
-
摘要: 为了快速准确得分析声子晶体的能带结构,该文基于工程与科学计算仿真平台SiPESC,开发了一类高效三维声子晶体能带结构分析软件。软件针对能带结构分析过程中计算量庞大的Hermitian矩阵的广义特征值求解问题和边界约束节点匹配问题,提出了相关软件设计方案。针对Hermitian矩阵的广义特征值求解,在实对称矩阵子空间迭代法的基础上,发展了Hermitian矩阵子空间迭代法。针对边界约束节点匹配问题,该文将三维周期性条件划分为点、边、面约束分别处理。针对面约束,该文使用定位格匹配策略将单层的点-点匹配更改为2层的点-定位格-点加速匹配。开展了与多物理场分析软件COMSOL进行数值算例对比。使用三维局域共振声子晶体算例验证了软件在满足数值精度的前提下计算效率高于对比软件。通过大规模模型算例验证了软件具有高效的大规模计算能力。Abstract: In order to quickly and accurately analyze the energy-band structure of phononic crystal, an efficient software for analyzing the band structure of three-dimensional phononic crystal is developed based on the engineering and scientific simulation platform SiPESC. The software design is proposed the optimization design for the generalized eigenvalue of Hermitian matrix and the boundary constraint node matching the problem occurred in the band-structure analysis process. Based on the subspace iterative method for real symmetric matrix, a subspace iterative method for Hermitian matrix is developed for solving generalized eigenvalues of Hermitian matrix. Aiming at the problem of node matching with boundary constraints, the three-dimensional periodic conditions are divided into point, edge and, face constraints, and the face constraints are processed separately. The location lattice matching strategy is used to change the single-layer point-point matching into two-layer point-location lattice-point matching to accelerate the face matching. The software is compared with COMSOL. The numerical results show that the efficiency of the software is higher than the contrast software. The large-scale computing ability of the software is verified by a large-scale model.
-
表 1 材料数据
Table 1. Material data
设备 SiPESC平台
部署环境COMSOL Multiphysics
5.5部署环境处理器 Intel(R) Xeon(R) E5-2600
CPU @ 28核2.00 GHzIntel(R) Core(TM) i7-8700
CPU @ 6核3.20 GHz内存 128 GB
三星DDR3 1600 MHz24 GB
三星DDR4 2666 MHz系统 Linux Kubuntu
2106LtsWin10 表 2 材料数据
Table 2. Material data
材料 弹性模量
E/Pa泊松比
ν密度
ρ/(kg/m3)环氧树脂 4.348×106 3.674×10−1 1180 硅 1.176×102 4.687×10−1 1300 铅 5.630×107 3.698×10−1 11 600 表 3 几何尺寸
Table 3. Geometric dimension
晶格常数a/mm 散射体半径r1/mm 包覆层半径r2/mm 15.5 5 7.5 表 4 材料数据
Table 4. Material data
材料 弹性模量
E/GPa泊松比
ν密度
ρ/(kg/m3)树脂 1 0.4 1097 表 5 几何尺寸
Table 5. Geometric dimension
晶格常数a/m 空心球直径r1/m 实心球直径r2/m 圆柱直径r3/m 1 1.32 0.9 0.06 表 6 材料数据
Table 6. Material data
材料 弹性模量
E/GPa泊松比
ν密度
ρ/(kg/m3)铝 70 0.346 2697 表 7 几何尺寸
Table 7. Geometric dimension
短边长度L/m 长边长度A/m $ \beta $/(°) $\theta $/(°) 0.02 0.04 45 20 -
[1] MALDOVAN M. Sound and heat revolutions in phononics [J]. Nature, 2013, 503(7475): 209 − 217. doi: 10.1038/nature12608 [2] 刘岩钊, 尹首浮, 于桂兰. 周期格栅式表面波屏障的设计与性能研究[J]. 工程力学, 2019, 36(增刊): 324 − 328. doi: 10.6052/j.issn.1000-4750.2018.04.S026LIU Yanzhao, YIN Shoufu, YU Guilan. Design and investigation of periodic grid barriers for seismic surface waves [J]. Engineering Mechanics, 2019, 36(Suppl): 324 − 328. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.S026 [3] 王维超, 刘泽, 于桂兰. 周期十字空沟地震表面波屏障[J]. 工程力学, 2019, 36(增刊): 144 − 148. doi: 10.6052/j.issn.1000-4750.2018.04.S027WANG Weichao, LIU Ze, YU Guilan. Periodic barriers with cruciform trenches for seismic surface waves [J]. Engineering Mechanics, 2019, 36(Suppl): 144 − 148. (in Chinese) doi: 10.6052/j.issn.1000-4750.2018.04.S027 [4] BAHRAMI A, ALINEJAD-NAINI M, MOTAEI F. Proposal for 1×4 phononic switch/demultiplexer using composite lattices [J]. Solid State Communications, 2021, 326: 114179. doi: 10.1016/j.ssc.2020.114179 [5] ARAVANTINOS-ZAFIRIS N, LUCKLUM F, SIGALAS M M. Complete phononic band gaps in the 3D yablonovite structure with spheres [J]. Ultrasonics, 2021, 110: 106265. doi: 10.1016/j.ultras.2020.106265 [6] WANG L, ZHENG H, ZHAO M, et al. Petrov–Galerkin method for the band structure computation of anisotropic and piezoelectric phononic crystals [J]. Applied Mathematical Modelling, 2021, 89: 1090 − 1105. doi: 10.1016/j.apm.2020.08.026 [7] LAUDE V. Principles and properties of phononic crystal waveguides [J]. APL Materials, 2021, 9(8): 080701. doi: 10.1063/5.0059035 [8] 刘良坤, 潘兆东, 谭平. 具有耗能减震层的连体结构减震分析[J]. 工程力学, 2021, 38(增刊): 202 − 208, 242. doi: 10.6052/j.issn.1000-4750.2020.05.S037LIU Liangkun, PAN Zhaodong, TAN Ping. Damping performance analysis of the connected structure with energy-dissipation story [J]. Engineering Mechanics, 2021, 38(Suppl): 202 − 208, 242. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.05.S037 [9] 唐安特, 上官文斌, 潘孝勇, 等. 橡胶隔振器高频动态特性的计算方法[J]. 工程力学, 2020, 37(1): 230 − 238. doi: 10.6052/j.issn.1000-4750.2019.02.0059TANG Ante, SHANGGUAN Wenbin, PAN Xiaoyong, et al. Computational method for the dynamic properties of rubber isolators [J]. Engineering Mechanics, 2020, 37(1): 230 − 238. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.02.0059 [10] 余慕春, 赵鹏, 牛智玲, 等. 胶质阻尼隔振器的力学模型及隔振性能研究[J]. 工程力学, 2020, 37(12): 220 − 227. doi: 10.6052/j.issn.1000-4750.2020.02.0119YU Muchun, ZHAO Peng, NIU Zhiling, et al. The mechanical model and vibration isolation properties of colloidal dampers [J]. Engineering Mechanics, 2020, 37(12): 220 − 227. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0119 [11] SIGALAS M, ECONOMOU E N. Band structure of elastic waves in two dimensional systems [J]. Solid State Communications, 1993, 86(3): 141 − 143. doi: 10.1016/0038-1098(93)90888-T [12] MERHEB B, DEYMIER P A, JAIN M, et al. Elastic and viscoelastic effects in rubber/air acoustic band gap structures: A theoretical and experimental study[J]. Journal of Applied Physics 2008, 104 (6): 064913. [13] KAFESAKI M, ECONOMOU E N. Multiple-scattering theory for three-dimensional periodic acoustic composites [J]. Physical Review B, 1999, 60(17): 11993 − 12001. doi: 10.1103/PhysRevB.60.11993 [14] 夏唐代, 孙苗苗, 陈晨. 弹性波多重散射的改进算法及双排刚性桩隔振研究[J]. 工程力学, 2011, 28(8): 106 − 112. doi: 10.6052/j.issn.1000-4750(2011)08-0106-07XIA Tangdai, SUN Miaomiao, CHEN Chen. Improved method for multiple scattering under SV incident wave and analysis of vibration isolation [J]. Engineering Mechanics, 2011, 28(8): 106 − 112. (in Chinese) doi: 10.6052/j.issn.1000-4750(2011)08-0106-07 [15] YIN J, ZHANG S, ZHANG H W, et al. Band structure and transmission characteristics of complex phononic crystals by multi-level substructure scheme [J]. International Journal of Modern Physics B, 2015, 29(4): 1550013. doi: 10.1142/S0217979215500137 [16] HE H, SHAO H B, HE C, et al. Study on the band gap optimization and defect state of two-dimensional honeycomb phononic crystals [J]. Journal of Materials Research, 2020, 35(21): 3021 − 3030. doi: 10.1557/jmr.2020.247 [17] 张洪武, 陈飙松, 李云鹏, 等. 面向集成化CAE软件开发的SiPESC研发工作进展[J]. 计算机辅助工程, 2011, 20(2): 39 − 49. doi: 10.3969/j.issn.1006-0871.2011.02.009ZHANG Hongwu, CHEN Biaosong, LI Yunpeng, et al. Advancement of design and implementation of SiPESC for development of integrated CAE software systems [J]. Computer Aided Engineering, 2011, 20(2): 39 − 49. (in Chinese) doi: 10.3969/j.issn.1006-0871.2011.02.009 [18] BATHE K J. The subspace iteration method – Revisited [J]. Computers & Structures, 2013, 126: 177 − 183. [19] WANG F J, CHENG J G, YAO Z H. FFS contact searching algorithm for dynamic finite element analysis [J]. International Journal for Numerical Methods in Engineering, 2001, 52(7): 655 − 672. doi: 10.1002/nme.221 [20] 陈磊磊, 陈海波, 郑昌军, 等. 基于有限元与宽频快速多极边界元的二维流固耦合声场分析[J]. 工程力学, 2014, 31(8): 63 − 69. doi: 10.6052/j.issn.1000-4750.2013.03.0200CHEN Leilei, CHEN Haibo, ZHENG Changjun, et al. FEM/wideband FMBEM coupling analysis for tow dimensional acoustic fluid-structure interaction problems [J]. Engineering Mechanics, 2014, 31(8): 63 − 69. (in Chinese) doi: 10.6052/j.issn.1000-4750.2013.03.0200 [21] LIU Z. Locally resonant sonic materials [J]. Science, 2000, 289(5485): 1734 − 1736. doi: 10.1126/science.289.5485.1734 [22] 殷鸣, 江卫锋, 殷国富. 含共振单元的单相3维声子晶体设计及其带隙特性研究[J]. 工程科学与技术, 2020, 52(5): 223 − 229.YIN Ming, JIANG Weifeng, YIN Guofu. Design of single phase 3D phononic crystal with resonantor and research of band gap property [J]. Advanced Engineering Sciences, 2020, 52(5): 223 − 229. (in Chinese) [23] SCHENK M, GUEST S D. Geometry of Miura-folded metamaterials [J]. Proceedings of the National Academy of Sciences, 2013, 110(9): 3276 − 3281. doi: 10.1073/pnas.1217998110 [24] 骆嘉晨. 折叠结构的波动特性及其调控[D]. 北京: 北京交通大学, 2019.LUO Jiachen. Properties and operations of waves in folded structures [D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese) -