EXPERIMENTAL AND NUMBERICAL SIMULATION OF SMA-FRICTION DAMPER BASED ON GEAR MECHANISM
-
摘要: 基于齿轮机构对形状记忆合金(SMA)丝非比例拉伸的特点,提出了一种新型SMA-摩擦阻尼器,并阐述了该阻尼器的基本构造和工作原理。对SMA丝进行循环拉伸试验,考察了加载幅值、加载速率对其力学性能的影响规律;分别对齿轮摩擦单元和SMA-摩擦阻尼器试件进行了低周往复荷载下的力学性能试验,得到了摩擦材料、预紧力以及位移幅值对单次循环耗能、割线刚度、等效阻尼比和自复位率等力学性能指标的影响规律;建立了SMA-摩擦阻尼器的简化力学模型并进行了数值模拟。研究结果表明:所用复合树脂材料较黄铜材料出力更大,性能更稳定;新型阻尼器具有良好的耗能能力、承载能力及自复位能力,可实现大行程设计;利用OpenSees有限元模型计算得到的滞回曲线与试验曲线吻合较好,验证了力学模型和材料本构二次开发的正确性。Abstract: Based on the non-proportional stretching of shape memory alloy (SMA) wire by the gear mechanism, a novel SMA-friction damper is proposed and the basic configuration and working principle of the damper are expounded. The effects of loading amplitude and loading rate on the mechanical properties of SMA wires are investigated by cyclic tensile tests. The mechanical properties of the gear friction unit and SMA-friction damper specimens under cyclic loading are tested respectively to investigate the effects of friction materials, of preloading forces and of displacement amplitudes on the mechanical performance indexes, such as energy consumption per cycle, secant stiffness, equivalent damping ratio and self-centering rate. The simplified mechanical model of a SMA-friction damper is established and numerically simulated. The results show that the composite resin material has a greater friction and higher stability compared with brass material. The novel damper has excellent energy dissipation capacity, bearing capacity and self-centering capacity, and can be applied in a large displacement situation. The hysteresis curves computed using the OpenSees finite element model are in a good agreement with the experimental ones, which proves that the mechanical model and the secondary development of the material constitutive are valid.
-
Key words:
- passive control /
- friction damper /
- mechanical experiment /
- shape memory alloy /
- gear mechanism /
- numerical simulation
-
表 1 SMA丝试验工况
Table 1. SMA test conditions
序号 丝材直径/
mm丝材长度/
mm加载速率/
(mm/min)应变幅值/
(%)总循环次数/
次1 1.8 200 20 7 20 2 1.8 200 20 2~8 7 3 1.8 200 10~60 7 6 注:工况2应变幅值增量为1%,各级加载循环一次;工况3加载速率增量为10 mm/min,各级加载循环一次。 表 2 SMA丝训练前后力学参数对比
Table 2. Comparison of mechanical parameters of SMA wire before and after training
N/
次σMs/
MPaσMf/
MPaσAs/
MPaσAf/
MPaΔW/
JKs/
(N/mm)ξeq/
(%)1 674.69 781.63 364.87 193.44 12.93 147.83 7.11 20 520.56 619.64 305.10 169.85 6.66 133.02 4.07 注:N为循环次数;σMs为马氏体相变起点应力;σMf为马氏体相变终点应力;σAs为奥氏体相变起点应力;σAf为奥氏体相变终点应力;ΔW为单次循环耗能;Ks为割线刚度;ξeq为等效阻尼比。 表 3 SMA丝变幅加载力学参数
Table 3. Mechanical parameters of SMA wire under variable loading amplitude
Am/
(%)σMs/
MPaσMf/
MPaσAs/
MPaσAf/
MPaΔW/
JKs/
(N/mm)ξeq/
(%)2 531.57 553.59 303.53 152.55 0.99 352.01 0.23 3 520.56 600.77 289.38 150.98 2.65 255.59 0.81 4 512.70 613.35 305.10 152.55 3.98 184.65 1.75 5 514.27 586.62 309.82 154.12 5.42 150.92 2.92 6 506.41 605.49 308.25 161.99 6.50 139.72 3.78 7 503.26 687.27 292.52 147.83 8.15 132.39 5.00 8 503.26 690.41 281.51 139.97 9.90 125.76 6.40 注:Am为应变幅值;σMs为马氏体相变起点应力;σMf为马氏体相变终点应力;σAs为奥氏体相变起点应力;σAf为奥氏体相变终点应力;ΔW为单次循环耗能;Ks为割线刚度;ξeq为等效阻 尼比。 表 4 SMA丝变速率加载力学参数
Table 4. Mechanical parameters of SMA wire under variable loading rate
V/
(mm/min)σMs/
MPaσMf/
MPaσAs/
MPaσAf/
MPaΔW/
JKs/
(N/mm)ξeq/
(%)10 504.05 661.32 307.46 148.62 8.36 130.12 5.22 20 508.77 666.04 304.32 147.05 7.31 132.45 4.48 30 507.20 645.60 299.60 150.20 6.88 131.99 4.23 40 508.77 650.31 302.74 154.91 6.78 138.53 3.98 50 500.9 634.58 313.75 151.77 6.51 130.60 4.05 60 493.04 647.17 320.04 158.06 6.34 132.28 3.89 注:V为加载速率;σMs为马氏体相变起点应力;σMf为马氏体相变终点应力;σAs为奥氏体相变起点应力;σAf为奥氏体相变终点应力;ΔW为单次循环耗能;Ks为割线刚度;ξeq为等效阻尼比。 表 5 阻尼器试验工况
Table 5. Cases of the specimens
序号 试件编号 SMA数量 SMA面积/mm2 摩擦材料 预紧力/kN 1 FDG-1 0 0.00 刹车片 0.5 2 5 2 FDG-2 0 0.00 黄铜 0.5 2 5 3 SFDG-1 2 5.09 刹车片 0.5 2 5 4 SFDG-2 2 5.09 黄铜 0.5 2 5 表 6 FDG试件力学性能参数
Table 6. Mechanical property parameters of FDG
试件 位移幅值/mm 预紧力0.5 kN 预紧力2.0 kN 预紧力5.0 kN ΔW/J Ks/(kN/mm) ξeq/(%) ΔW/J Ks/(kN/mm) ξeq/(%) ΔW/J Ks/(kN/mm) ξeq/(%) FDG-1 10 19.25 0.051 58.87 87.15 0.226 59.85 187.16 0.499 58.09 15 27.95 0.033 58.83 133.47 0.154 60.26 287.58 0.339 59.33 20 37.55 0.026 55.83 178.84 0.119 59.19 383.67 0.250 60.20 25 46.67 0.022 54.73 221.39 0.097 57.54 477.64 0.200 60.42 FDG-2 10 9.97 0.028 54.29 56.48 0.146 59.40 128.53 0.338 59.63 15 15.53 0.020 53.27 84.76 0.100 58.36 199.22 0.227 60.72 20 20.22 0.015 52.51 111.08 0.076 57.32 268.64 0.171 61.30 25 26.00 0.013 49.63 136.03 0.058 59.18 341.29 0.141 61.50 注:ΔW为单次循环耗能;Ks为割线刚度;ξeq为等效阻尼比。 表 7 SFDG试件力学性能参数
Table 7. Mechanical property parameters of SFDG
试件 位移幅值/mm 预紧力0.5 kN 预紧力2.0 kN 预紧力5.0 kN ΔW/J Ks/(kN/mm) ξeq/(%) δ/(%) ΔW/J Ks/(kN/mm) ξeq/(%) δ/(%) ΔW/J Ks/(kN/mm) ξeq/(%) δ/(%) SFDG-1 10 33.07 0.207 24.71 3.89 88.31 0.317 43.29 2.81 214.51 0.660 50.37 4.93 15 61.06 0.197 21.64 13.14 140.82 0.259 37.82 3.07 338.03 0.481 48.74 3.96 20 93.34 0.177 20.79 18.27 196.81 0.226 34.21 3.28 461.04 0.392 46.26 3.05 25 132.53 0.187 17.89 23.19 256.98 0.221 29.25 4.71 588.11 0.363 40.97 2.78 SFDG-2 10 23.11 0.154 23.88 5.18 64.81 0.245 40.87 3.20 165.82 0.513 50.02 4.63 15 41.37 0.166 17.40 20.17 104.23 0.210 34.61 3.34 263.48 0.390 46.85 3.99 20 65.70 0.154 16.81 28.87 148.75 0.185 31.68 3.53 363.44 0.316 45.21 2.93 25 95.32 0.163 14.78 30.80 195.20 0.184 26.77 7.32 462.48 0.290 40.22 2.84 注:ΔW为单次循环耗能;Ks为割线刚度;ξeq为等效阻尼比;自复位率δ=(D−D0)/D,D为最大加载位移,D0为残余位移。 表 8 数值模拟参数
Table 8. Parameters selected for numerical simulation
SMA丝参数 摩擦单元参数 L0=182 mm E=33 000 MPa k=650,2200,5600 N/mm Y=550 MPa n=3 λ=0.01 As=5.087 mm2 α=0.01 Dy=1 ft=1.3 a=200 A=8 c=0.001 fm=10 000 B=2 m=3 εmf =0.09 γ=2,η=7 注:预紧力为0.5 kN、2.0 kN和5.0 kN工况所对应的k值用逗号
隔开。表 9 试验结果和数值模拟结果对比
Table 9. Comparison between experimental and numerical results
预紧力
/kN位移幅值/mm ΔW/J 误差/(%) Ks/(kN/mm) 误差/(%) ξeq/(%) 误差/(%) δ/(%) 误差/(%) 试验 模拟 试验 模拟 试验 模拟 试验 模拟 0.5 10 33.07 31.27 5.76 0.207 0.214 3.27 24.71 23.40 5.60 3.89 12.64 69.22 15 61.06 59.31 2.95 0.197 0.194 1.55 21.64 21.38 1.22 13.14 18.53 29.09 20 93.34 94.62 1.35 0.177 0.188 5.85 20.79 19.65 5.80 18.27 20.86 12.41 25 132.53 136.53 2.93 0.187 0.196 4.59 17.89 17.48 2.35 23.19 21.03 10.27 2.0 10 88.31 86.50 2.09 0.317 0.320 0.94 43.29 41.44 4.46 2.81 7.71 63.55 15 140.82 138.91 1.38 0.259 0.253 2.37 37.82 37.86 0.11 3.07 5.89 47.88 20 196.81 195.06 0.90 0.226 0.220 2.72 34.21 34.63 1.21 3.28 4.96 33.87 25 256.98 254.42 1.01 0.221 0.222 0.45 29.25 28.73 1.81 4.71 6.02 21.76 5.0 10 214.51 213.19 0.62 0.660 0.649 1.69 50.37 50.41 0.08 4.93 6.63 25.64 15 338.03 332.13 1.78 0.481 0.475 1.26 48.74 48.27 0.97 3.96 4.74 16.46 20 461.04 453.60 1.64 0.392 0.390 0.51 46.26 45.46 1.76 3.05 3.89 21.59 25 588.11 577.46
1.84 0.363 0.378 3.96 40.97 38.40 6.69 2.78 3.48 20.12 注:ΔW为单次循环耗能;Ks为割线刚度;ξeq为等效阻尼比;自复位率δ=(D−D0)/D,D为最大加载位移,D0为残余位移。 -
[1] 刘明明, 李宏男, 付兴. 一种新型自复位SMA-剪切型铅阻尼器的试验及其数值分析[J]. 工程力学, 2018, 35(6): 52 − 57, 67. doi: 10.6052/j.issn.1000-4750.2017.01.0066LIU Mingming, LI Hongnan, FU Xing. Experimental and numerical analysis of an innovative re-centering shape memory alloys-shearing lead damper [J]. Engineering Mechanics, 2018, 35(6): 52 − 57, 67. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.01.0066 [2] COLAJANNI P, MENDOLA L L, MONACO A, et al. Design of RC joints equipped with hybrid trussed beams and friction dampers [J]. Engineering Structures, 2021, 227: 111442. doi: 10.1016/j.engstruct.2020.111442 [3] GHORBANI H R, ROFOOEI F R. A novel double slip loads friction damper to control the seismic response of structures [J]. Engineering Structures, 2020, 225: 111273. doi: 10.1016/j.engstruct.2020.111273 [4] VEISMORADI S, YOUSEF-BEIK M M, ZARNANI P, et al. Development and parametric study of a new self-centering rotational friction damper [J]. Engineering Structures, 2021, 235: 112097. doi: 10.1016/j.engstruct.2021.112097 [5] 张爱林, 王杰, 张艳霞, 等. 箱形柱芯筒式双法兰刚性连接节点平面框架拟静力试验研究[J]. 工程力学, 2021, 38(9): 146 − 160. doi: 10.6052/j.issn.1000-4750.2020.09.0649ZHANG Ailin, WANG Jie, ZHANG Yanxia, et al. Comparative analysis of experiments on plane steel frame and damped steel frame with double flanged rigid connections containing core tube [J]. Engineering Mechanics, 2021, 38(9): 146 − 160. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.09.0649 [6] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念—可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7): 941 − 948. doi: 10.3969/j.issn.0253-374x.2011.07.001LYU Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design: earthquake resilient structures [J]. Journal of Tongji University (Natural Science), 2011, 39(7): 941 − 948. (in Chinese) doi: 10.3969/j.issn.0253-374x.2011.07.001 [7] OZBULUT O E, HURLEBAUS S. Re-centering variable friction device for vibration control of structures subjected to near-field earthquakes [J]. Mechanical Systems & Signal Processing, 2011, 25(8): 2849 − 2862. [8] ZHANG Z, BI K, HAO H, et al. Development of a novel deformation-amplified shape memory alloy-friction damper for mitigating seismic responses of RC frame buildings [J]. Engineering Structures, 2020, 216: 110751. doi: 10.1016/j.engstruct.2020.110751 [9] 任文杰, 李宏男, 宋钢兵, 等. 新型自复位SMA阻尼器对框架结构减震控制的研究[J]. 土木工程学报, 2013, 46(6): 14 − 20.REN Wenjie, LI Hongnan, SONG Gangbing, et al. Study on seismic response control of frame structure using innovative re-centering SMA damper [J]. China Civil Engineering Journal, 2013, 46(6): 14 − 20. (in Chinese) [10] 展猛, 王社良, 赵云. SMA压电复合减震装置电力学性能及其本构模型[J]. 振动. 测试与诊断, 2019, 39(4): 845 − 851, 909.ZHAN Meng, WANG Sheliang, ZHAO Yun. Electrodynamic performance and its constitutive model for SMA piezoelectric composite control device [J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(4): 845 − 851, 909. (in Chinese) [11] 屈俊童, 卢飞, 吴洋洋, 等. 新型筒式自复位SMA-摩擦阻尼器的减震性能分析[J]. 噪声与振动控制, 2020, 40(3): 213 − 218, 269. doi: 10.3969/j.issn.1006-1355.2020.03.037QU Juntong, LU Fei, WU Yangyang, et al. Analysis of vibration attenuation performance of a new circular tube re-centering SMA-friction damper [J]. Noise and Vibration Control, 2020, 40(3): 213 − 218, 269. (in Chinese) doi: 10.3969/j.issn.1006-1355.2020.03.037 [12] 胡淑军, 顾琦, 姜国青, 等. 一种新型自复位SMA支撑的抗震性能试验研究[J]. 工程力学, 2021, 38(1): 109 − 118, 142. doi: 10.6052/j.issn.1000-4750.2020.02.0087HU Shujun, GU Qi, JIANG Guoqing, et al. Experimental study on seismic performance for an innovative self-centering SMA brace [J]. Engineering Mechanics, 2021, 38(1): 109 − 118, 142. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0087 [13] SHAKERI J, ABDOLLAHZADEH G. Seismic rehabilitation of tall steel moment resisting frames damaged by fire with SMA-based hybrid friction damper [J]. International Journal of Steel Structures, 2020, 20(1): 46 − 66. doi: 10.1007/s13296-019-00270-y [14] BERTON S, BOLANDER J E. Amplification system for supplemental damping devices in seismic applications [J]. Journal of Structural Engineering, 2005, 131(6): 979 − 983. doi: 10.1061/(ASCE)0733-9445(2005)131:6(979) [15] LI H N, HUANG Z, FU X, et al. A re-centering deformation‐amplified shape memory alloy damper for mitigating seismic response of building structures [J]. Structural Control and Health Monitoring, 2018, 25(9): e2233.1 − e2233.20. [16] 赵桂峰, 马玉宏. 阻尼器响应放大技术研究与应用进展[J]. 土木工程学报, 2020, 53(6): 64 − 78.ZHAO Guifeng, MA Yuhong. Research and application progress of damper response amplification technology [J]. China Civil Engineering Journal, 2020, 53(6): 64 − 78. (in Chinese) [17] DOLCE M, CARDONE D. Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension [J]. International Journal of Mechanical Sciences, 2001, 43(11): 2657 − 2677. doi: 10.1016/S0020-7403(01)00050-9 [18] 任文杰, 王利强, 马志成, 等. 形状记忆合金-摩擦复合阻尼器力学性能研究[J]. 建筑结构学报, 2013, 34(2): 83 − 90.REN Wenjie, WANG Liqiang, MA Zhicheng, et al. Investigation on mechanical behavior of innovative shape memory alloy-friction damper [J]. Journal of Building Structures, 2013, 34(2): 83 − 90. (in Chinese) [19] 韩建平, 章全才. 新型自复位黏弹性阻尼支撑力学性能研究[J]. 工程力学, 2021, 38(1): 195 − 204. doi: 10.6052/j.issn.1000-4750.2020.03.0168HAN Jianping, ZHANG Quancai. The investigation on mechanical behavior of a new-type self-centering viscoelastic damping brace [J]. Engineering Mechanics, 2021, 38(1): 195 − 204. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0168 [20] 钱辉, 李宏男, 宋钢兵, 等. 基于塑性理论的形状记忆合金本构模型、试验和数值模拟[J]. 功能材料, 2007, 38(7): 1114 − 1118. doi: 10.3321/j.issn:1001-9731.2007.07.020QIAN Hui, LI Hongnan, SONG Gangbing, et al. Constitutive model of shape memory alloy based on plastic theory: experiment and simulation [J]. Journal of Functional Materials, 2007, 38(7): 1114 − 1118. (in Chinese) doi: 10.3321/j.issn:1001-9731.2007.07.020 -