METHOD FOR DYNAMIC CHARACTERISTIC ANALYSIS OF BEAMS WITH VARYING CROSS-SECTIONS BY USING PERIDYNAMIC DIFFERENTIAL OPERATOR
-
摘要: 变截面梁式构件广泛应用于工程结构中,其动力特性更是结构设计和状态评估中的重要考虑因素之一。基于新兴的近场动力学微分算子(Peridynamic differential operator, PDDO),尝试提出了一种用于变截面梁动力特性分析的非局部方法。将变截面梁的动力学微分控制方程与边界条件通过PDDO由局部微分形式转化为对应的非局部积分形式,再结合拉格朗日乘数法与变分原理,将非局部积分形式的控制方程与边界条件转化为标准特征值问题表达形式,从而求得自振频率与振型。通过对等截面梁的自由振动分析并与解析解对比,验证了该方法良好的收敛性与准确性。进一步通过求解下边界一次、二次变化的连续变截面梁,证明了该方法对于任意变截面梁自由振动分析的适用性与可靠性。开展含孔变截面梁的自由振动分析,体现了该文的非局部方法在含缺陷构件振动分析和损伤识别问题方面的潜力,可为含缺陷变截面构件的动力分析问题提供新思路。Abstract: Beam-type components with non-uniform cross-sections are widely used in various engineering structures, the dynamic characteristic of which is one of the most important factors in structural design and state evaluation. A non-local numerical model for dynamic characteristic analysis of beams with varying cross-sections is presented by using a peridynamic differential operator (PDDO). The dynamic differential equations and boundary conditions of beams with variable cross-sections are reformulated to a non-local integral form based on PDDO. The natural frequency and vibration mode can be solved by employing the variational analysis and Lagrange multiplier method. A comparison study of beams with constant cross-sections is conducted to validate the accuracy and convergence of this non-local method by comparing the non-local analysis results with analytical solutions in pertinent literatures. The vibrations of two beams with linearly varying and parabolic convex lower surfaces are analyzed, respectively, to verify the applicability and reliability of the method proposed in the free vibration analysis of beams with arbitrarily varying cross-sections. The free vibration of a beam with a hole and parabolic convex lower surface is investigated further to demonstrate the potential of this presented approach in the vibration analysis and damage identification of defective components with non-uniform cross-sections, and which provides a new perspective for the free vibration analysis of defective components with non-uniform cross-sections.
-
表 1 等截面梁的无量纲自振频率
Table 1. Non-dimensional frequencies of the beam with constant cross-section
阶次 本文解 解析解[10] 相对误差/(%) 1 9.7332 9.6420 0.946 2 37.240 36.893 0.940 3 78.588 77.860 0.935 4 108.77 108.00 0.706 5 129.62 128.42 0.929 6 187.02 185.32 0.919 7 217.26 215.76 0.699 8 248.53 246.26 0.921 表 2 下边界一次变化梁的无量纲自振频率
Table 2. Non-dimensional frequencies of the beam with linearly varying lower surface
表 3 下边界二次变化梁的无量纲自振频率
Table 3. Non-dimensional frequencies of the beam with parabolic convex lower surface
表 4 下边界二次变化含孔梁的无量纲自振频率
Table 4. Non-dimensional frequencies of the beam with a hole and parabolic convex lower surface
阶次 r/H = 0.4 r/H =0.6 r/H =0.8 1 10.235 10.335 10.153 2 37.035 36.675 34.956 3 79.879 80.177 79.080 4 130.74 124.14 100.50 5 141.13 129.60 108.26 6 197.15 198.78 197.61 7 254.23 233.76 199.19 8 275.65 279.85 285.51 -
[1] LI Z, XU Y, HUANG D. Accurate solution for functionally graded beams with arbitrarily varying thicknesses resting on a two-parameter elastic foundation [J]. The Journal of Strain Analysis for Engineering Design, 2020, 55(7/8): 222 − 236. doi: 10.1177/0309324720922739 [2] LI Z, XU Y, HUANG D. Analytical solution for vibration of continuously varying-Thickness beams resting on pasternak elastic foundations [J]. Advances in Applied Mathematics and Mechanics, 2021, 13(4): 850 − 866. doi: 10.4208/aamm.OA-2019-0284 [3] 王永亮. 变截面变曲率梁振型的有限元超收敛拼片恢复解和网格自适应分析[J]. 工程力学, 2020, 37(12): 1 − 8. doi: 10.6052/j.issn.1000-4750.2020.02.0065WANG Yongliang. Superconvergent patch recovery solutions and adaptive mesh refinement analysis of finite element method for the vibration modes of non-uniform and variable curvature beams [J]. Engineering Mechanics, 2020, 37(12): 1 − 8. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.02.0065 [4] 王永亮, 王建辉, 张磊. 含多裂纹损伤圆弧曲梁自由振动扰动的有限元网格自适应分析[J]. 工程力学, 2021, 38(10): 24 − 33. doi: 10.6052/j.issn.1000-4750.2020.10.0708WANG Yongliang, WANG Jianhui, ZHANG Lei. Adaptive mesh refinement analysis of finite element method for free vibration disturbance of circularly curved beams with multiple cracks [J]. Engineering Mechanics, 2021, 38(10): 24 − 33. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.10.0708 [5] SINIR S, ÇEVIK M, SINIR B G. Nonlinear free and forced vibration analyses of axially functionally graded Euler-Bernoulli beams with non-uniform cross-section [J]. Composites Part B:Engineering, 2018, 148: 123 − 131. doi: 10.1016/j.compositesb.2018.04.061 [6] CAO D, GAO Y. Free vibration of non-uniform axially functionally graded beams using the asymptotic development method [J]. Applied Mathematics and Mechanics, 2019, 40(1): 85 − 96. doi: 10.1007/s10483-019-2402-9 [7] 薄喆, 葛根. 基于超几何函数和梅哲G函数的变截面梁的非线性振动建模及自由振动[J]. 振动与冲击, 2019, 38(23): 77 − 83.BO Zhe, GE Gen. Nonlinear dynamic modelling and free vibration for a tapered cantilever beam based on hyper-geometric function and Meijer-G function [J]. Journal of Vibration and Shock, 2019, 38(23): 77 − 83. (in Chinese) [8] 周坤涛, 杨涛, 葛根. 基于新型振型函数的渐细变截面悬臂梁的自由振动理论与实验研究[J]. 工程力学, 2020, 37(3): 28 − 35. doi: 10.6052/j.issn.1000-4750.2019.05.0260ZHOU Kuntao, YANG Tao, GE Gen. Theoretical and experimental study on free vibration of cantilever tapered beam base on new modal function [J]. Engineering Mechanics, 2020, 37(3): 28 − 35. (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.05.0260 [9] SOLTANI M, ASGARIAN B. New hybrid approach for free vibration and stability analyses of axially functionally graded Euler-Bernoulli beams with variable cross-section resting on uniform Winkler-Pasternak foundation [J]. Latin American Journal of Solids and Structures, 2019, 16(3): 1 − 25. [10] LI Z, XU Y, HUANG D, et al. Two-dimensional elasticity solution for free vibration of simple-supported beams with arbitrarily and continuously varying thickness [J]. Archive of Applied Mechanics, 2020, 90(2): 275 − 289. doi: 10.1007/s00419-019-01608-y [11] LI Z, XU Y, HUANG D. Analytical solution for vibration of functionally graded beams with variable cross-sections resting on Pasternak elastic foundations [J]. International Journal of Mechanical Sciences, 2021, 191: 106084. doi: 10.1016/j.ijmecsci.2020.106084 [12] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175 − 209. doi: 10.1016/S0022-5096(99)00029-0 [13] 黄丹, 章青, 乔丕忠, 等. 近场动力学方法及其应用[J]. 力学进展, 2010, 40(4): 448 − 459. doi: 10.6052/1000-0992-2010-4-J2010-002HUANG Dan, ZHANG Qing, QIAO Pizhong, et al. A review on peridynamics method and its application [J]. Advance in Mechanics, 2010, 40(4): 448 − 459. (in Chinese) doi: 10.6052/1000-0992-2010-4-J2010-002 [14] MADENCI E, OTERKUS E. Peridynamic theory and its applications [M]. New York: Springer, 2014. [15] BOBARU F, FOSTER J T, GEUBELLE P H, et al. Handbook of peridynamic modeling [M]. Raton: CRC Press, 2016. [16] 秦洪远, 黄丹, 刘一鸣, 等. 基于改进型近场动力学方法的多裂纹扩展分析[J]. 工程力学, 2017, 34(12): 31 − 38. doi: 10.6052/j.issn.1000-4750.2016.08.0634QIN Hongyuan, HUANG Dan, LIU Yiming, et al. An extended peridynamic approach for analysis of multiple crack growth [J]. Engineering Mechanics, 2017, 34(12): 31 − 38. (in Chinese) doi: 10.6052/j.issn.1000-4750.2016.08.0634 [17] 顾鑫, 章青, 黄丹. 基于近场动力学方法的混凝土板侵彻问题研究[J]. 振动与冲击, 2016, 35(6): 52 − 58.GU Xin, ZHANG Qing, HUANG Dan. Peridynamics used in solving penetration problem of concrete slabs [J]. Journal of Vibration and Shock, 2016, 35(6): 52 − 58. (in Chinese) [18] 张钰彬, 黄丹. 页岩水力压裂过程的态型近场动力学模拟研究[J]. 岩土力学, 2019, 40(7): 2873 − 2881.ZHANG Yubin, HUANG Dan. State-based peridynamic study on the hydraulic fracture of shale [J]. Rock and Soil Mechanics, 2019, 40(7): 2873 − 2881. (in Chinese) [19] 王涵, 黄丹, 徐业鹏, 等. 非常规态型近场动力学热黏塑性模型及其应用[J]. 力学学报, 2018, 50(4): 810 − 819. doi: 10.6052/0459-1879-18-113WANG Han, HUANG Dan, XU Yepeng, et al. Non-ordinary state-based peridynamic thermal-viscoplastic model and its application [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 810 − 819. (in Chinese) doi: 10.6052/0459-1879-18-113 [20] 马鹏飞, 李树忱, 王修伟, 等. 基于非局部LSM优化的近场动力学及脆性材料变形模拟[J]. 工程力学, 2022, 39(6): 1 − 10. doi: 10.6052/j.issn.1000-4750.2021.03.0188MA Pengfei, LI Shuchen, WANG Xiuwei, et al. Peridynamic method based on nonlocal LSM optimization and deformation simulation of brittle materials [J]. Engineering Mechanics, 2022, 39(6): 1 − 10. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.03.0188 [21] MADENCI E, BARUT A, FUTCH M. Peridynamic differential operator and its applications [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 408 − 451. doi: 10.1016/j.cma.2016.02.028 [22] MADENCI E, BARUT A, DORDUNCU M. Peridynamic differential operator for numerical analysis [M]. New York: Springer International Publishing, 2019. [23] GAO Y, OTERKUS S. Multi-phase fluid flow simulation by using peridynamic differential operator [J]. Ocean Engineering, 2020, 216: 108081. doi: 10.1016/j.oceaneng.2020.108081 [24] DORDUNCU M. Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory [J]. Thin-Walled Structures, 2020, 146: 106468. doi: 10.1016/j.tws.2019.106468 [25] DORDUNCU M. Stress analysis of laminated composite beams using refined zigzag theory and peridynamic differential operator [J]. Composite Structures, 2019, 218: 193 − 203. doi: 10.1016/j.compstruct.2019.03.035 [26] CHEN W, GU X, ZHANG Q, et al. A refined thermo-mechanical fully coupled peridynamics with application to concrete cracking [J]. Engineering Fracture Mechanics, 2021, 242: 107463. doi: 10.1016/j.engfracmech.2020.107463 [27] LI Z, HUANG D, XU Y, et al. Nonlocal steady-state thermoelastic analysis of functionally graded materials by using peridynamic differential operator [J]. Applied Mathematical Modelling, 2021, 93: 294 − 313. doi: 10.1016/j.apm.2020.12.004 -