留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机场的海洋混凝土结构耐久性实证分析

叶新一 李全旺

叶新一, 李全旺. 基于随机场的海洋混凝土结构耐久性实证分析[J]. 工程力学, 2022, 39(S): 138-143. doi: 10.6052/j.issn.1000-4750.2021.07.S026
引用本文: 叶新一, 李全旺. 基于随机场的海洋混凝土结构耐久性实证分析[J]. 工程力学, 2022, 39(S): 138-143. doi: 10.6052/j.issn.1000-4750.2021.07.S026
YE Xin-yi, LI Quan-wang. RANDAM-FIELD-BASED EMPIRICAL DURABILITY ANALYSIS OF REINFORCED CONCRETE STRUCTURES IN MARINE ENVIRONMENT[J]. Engineering Mechanics, 2022, 39(S): 138-143. doi: 10.6052/j.issn.1000-4750.2021.07.S026
Citation: YE Xin-yi, LI Quan-wang. RANDAM-FIELD-BASED EMPIRICAL DURABILITY ANALYSIS OF REINFORCED CONCRETE STRUCTURES IN MARINE ENVIRONMENT[J]. Engineering Mechanics, 2022, 39(S): 138-143. doi: 10.6052/j.issn.1000-4750.2021.07.S026

基于随机场的海洋混凝土结构耐久性实证分析

doi: 10.6052/j.issn.1000-4750.2021.07.S026
基金项目: 国家自然科学基金项目(51890901)
详细信息
    作者简介:

    叶新一(1993−),男,广东人,博士,主要从事结构耐久性研究(E-mail: yexinyi2021@163.com)

    通讯作者:

    李全旺(1975−),男,天津人,副教授,博士,主要从事结构可靠度研究(E-mail: li_quanwang@tsinghua.edu.cn)

  • 中图分类号: P75;TU37

RANDAM-FIELD-BASED EMPIRICAL DURABILITY ANALYSIS OF REINFORCED CONCRETE STRUCTURES IN MARINE ENVIRONMENT

  • 摘要: 该文基于随机场理论及模拟方法,考虑耐久性参数批次效应,选取位于香港的海洋环境在役混凝土结构工程,进行其表观劣化发展过程的模拟分析与评价,并与实际检测数据进行对比,以验证耐久性分析结果准确性。结果表明:模拟分析结果与实际损坏程度基本一致。该文指出,基于随机场的模拟分析方法能够给出海洋混凝土结构多个维度的表观劣化度信息,将可能指导未来其它工程设计方案和维护策略的制定,从而有助于结构预想的全寿命性能实现和成本控制。
  • 图  1  海洋氯化物环境混凝土劣化发展过程[7]

    Figure  1.  Deterioration development of concrete in marine chloride environment [7]

    图  2  预制混凝土板件及单元划分示意图 /mm

    Figure  2.  Element divisions of the precast concrete slabs

    图  3  不同龄期混凝土面板劣化到A、B、C、D四个等级的百分比变化情况

    Figure  3.  Percentages that reinforced concrete slabs deteriorate to Grade A, B, C and D at different service ages

    图  4  构件表面第一道裂缝出现时间的分布直方图

    Figure  4.  Histogram of the time to first surface cracking

    图  5  开裂比例、最大裂缝宽度、最大裂缝长度、裂缝数量均值和分布情况随服役时间的变化

    Figure  5.  Means and probability distributions of cracking proportions, maximum crack widths, maximum crack lengths and cracking amounts at different ages

    表  1  码头混凝土面板耐久性参数的统计特征

    Table  1.   Statistic properties of durability parameters of the reinforced concrete slabs

    参数变量分布模型统计特征相关
    长度/mm
    临界氯离子浓度Ccr/
    混凝土质量百分比/(%)
    对数正态分布 均值:0.10,
    标准差:0.02
    2000
    表面氯离子浓度Cs/
    混凝土质量百分比/(%)
    对数正态分布 均值:0.27,
    标准差:0.04
    1960
    不同批次间的保护层
    厚度分项c(b)/mm
    对数正态分布 均值:43.0,
    标准差:9.2
    同一批次内的保护层
    厚度分项c(a)/mm
    正态分布 均值:0,
    标准差:3.7
    130
    不同批次间的扩散系数分项$D_{{\rm{a}}0}^{({\rm{b}})} $/(×10−12 m2/s) 对数正态分布 均值:4.35,
    标准差:1.44
    同一批次内的扩散系数分项$D_{{\rm{a}}0}^{({\rm{a}})} $/(×10−12 m2/s) 正态分布 均值:0,
    标准差:0.50
    250
    指数衰减系数n 正态分布 均值:0.2,
    标准差:0.01
    不均匀锈蚀程度参数κ 均匀分布 下界:4,
    上界:8
    锈蚀电流密度icor1/(μA/cm2) 对数正态分布 均值:0.67,
    标准差:0.39
    2000
    锈蚀电流密度icor2/(μA/cm2) 对数正态分布 均值:8.80,
    标准差:5.10
    2000
    下载: 导出CSV

    表  2  外观劣化度分级标准及量化准则[5]

    Table  2.   Surface damage grading rules and thequantified criteria[5]

    劣化等级外观劣化程度的描述性准则(裂缝)量化准则
    Ap0≤1%
    B局部有微小锈蚀裂缝,裂缝宽度小于0.3 mmp0 > 1%
    p0.3≤1%
    C裂缝较多,部分为顺筋连续裂缝,裂缝宽度在0.3 mm~3.0 mm之间p0.3 > 1%
    p3.0≤1%
    D大面积顺筋连续裂缝,裂缝宽度大于3.0 mmp3.0 > 1%
    下载: 导出CSV

    表  3  模拟结果与实际损坏程度的对比

    Table  3.   Comparisons between the simulated results and the actual damage proportions

    劣化等级模拟结果/(%)实际损坏程度
    A1131/144=0.22
    B1354/144=0.38
    C637/144=0.05
    D1352/144=0.36
    下载: 导出CSV
  • [1] 干伟忠, 金伟良, Raupach M. 海洋环境混凝土结构耐久性原位监测原理和剩余寿命预报[J]. 工程力学, 2011, 28(增刊 2): 78 − 84, 96.

    Gan Weizhong, Jin Weiliang, Raupach M. The in-situ monitoring principles and the residual life prediction of the durability of concrete structure in marine environment [J]. Engineering Mechanics, 2011, 28(Suppl 2): 78 − 84, 96. (in Chinese)
    [2] 庞龙, 应宗权, 范志宏, 等. 基于实测数据的港工混凝土结构环境荷载模型及耐久性分析[J]. 工程力学, 2016, 33(增刊): 168 − 172. doi: 10.6052/j.issn.1000-4750.2015.04.S019

    Pang Long, Ying Zongquan, Fan Zhihong, et al. Environmental load model and durability analysis of marine concrete structures based on in-situ test data in south China [J]. Engineering Mechanics, 2016, 33(Suppl): 168 − 172. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.04.S019
    [3] Der Kiureghian A, Ke B J. The stochastic finite element method in structural reliability [J]. Probabilistic Engineering Mechanics, 1988, 3(2): 83 − 91. doi: 10.1016/0266-8920(88)90019-7
    [4] Vu K, Stewart M G. Predicting the likelihood and extent of reinforced concrete corrosion-induced cracking [J]. Journal of Structural Engineering, 2005, 131(11): 1681 − 1689. doi: 10.1061/(ASCE)0733-9445(2005)131:11(1681)
    [5] Li Q, Ye X. Surface deterioration analysis for probabilistic durability design of RC structures in marine environment [J]. Structural Safety, 2018, 75: 13 − 23. doi: 10.1016/j.strusafe.2018.05.007
    [6] Noh Y, Choi K K, Du L. Reliability-based design optimization of problems with correlated input variables using a Gaussian Copula [J]. Structural and Multidisciplinary Optimization, 2009, 38(1): 1 − 16. doi: 10.1007/s00158-008-0277-9
    [7] Zhang R, Castel A, François R. The corrosion pattern of reinforcement and its influence on serviceability of reinforced concrete members in chloride environment [J]. Cement and Concrete Research, 2009, 39(11): 1077 − 1086. doi: 10.1016/j.cemconres.2009.07.025
    [8] Collepardi M, Marcialis A, Turriziani R. Penetration of chloride ions into cement pastes and concretes [J]. Journal of the American Ceramic Society, 1972, 55(10): 534 − 535. doi: 10.1111/j.1151-2916.1972.tb13424.x
    [9] Vidal T, Castel A, François R. Analyzing crack width to predict corrosion in reinforced concrete [J]. Cement and Concrete Research, 2004, 34(1): 165 − 174. doi: 10.1016/S0008-8846(03)00246-1
    [10] Khan I, François R, Castel A. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams [J]. Cement and Concrete Research, 2014, 56: 84 − 96. doi: 10.1016/j.cemconres.2013.11.006
    [11] Bamforth P B. The derivation of input data for modelling chloride ingress from eight-year UK coastal exposure trials [J]. Magazine of Concrete Research, 1999, 51(2): 87 − 96. doi: 10.1680/macr.1999.51.2.87
    [12] Zhang R, Castel A, François R. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process [J]. Cement and Concrete Research, 2010, 40(3): 415 − 425. doi: 10.1016/j.cemconres.2009.09.026
    [13] JTJ 302−2006, 港口水工建筑物检测与技术评估规范[S]. 北京: 人民交通出版社, 2007.

    JTJ 302−2006, Technical specification for detection and assessment of harbour and marine structures [S]. Beijing: China Communications Press, 2007. (in Chinese)
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  18
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-02
  • 修回日期:  2022-03-25
  • 网络出版日期:  2022-04-30
  • 刊出日期:  2022-06-06

目录

    /

    返回文章
    返回