RANDAM-FIELD-BASED EMPIRICAL DURABILITY ANALYSIS OF REINFORCED CONCRETE STRUCTURES IN MARINE ENVIRONMENT
-
摘要: 该文基于随机场理论及模拟方法,考虑耐久性参数批次效应,选取位于香港的海洋环境在役混凝土结构工程,进行其表观劣化发展过程的模拟分析与评价,并与实际检测数据进行对比,以验证耐久性分析结果准确性。结果表明:模拟分析结果与实际损坏程度基本一致。该文指出,基于随机场的模拟分析方法能够给出海洋混凝土结构多个维度的表观劣化度信息,将可能指导未来其它工程设计方案和维护策略的制定,从而有助于结构预想的全寿命性能实现和成本控制。Abstract: Based on random field theory and the simulation method considering the Batch Production Effect, this study conducts simulations and assessments for the surface deterioration process of an in-service reinforced concrete (RC) structure in marine environment in Hong Kong. To verify the accuracy of the analysis results, they are compared with the in-situ inspection data. It is concluded that the simulation results are consistent with the realistic damage extents. Further, this study suggests that the random-field-based simulation method can provide the information on surface deterioration of marine RC structures with more measures, and in the future will guide the formulation of design schemes and maintenance strategies for other projects, and therefore help the implement of the target life-cycle performances and cost controls.
-
Key words:
- RC structures /
- concrete durability /
- random field /
- chloride-attack /
- surface deterioration /
- empirical study
-
表 1 码头混凝土面板耐久性参数的统计特征
Table 1. Statistic properties of durability parameters of the reinforced concrete slabs
参数变量 分布模型 统计特征 相关
长度/mm临界氯离子浓度Ccr/
混凝土质量百分比/(%)对数正态分布 均值:0.10,
标准差:0.022000 表面氯离子浓度Cs/
混凝土质量百分比/(%)对数正态分布 均值:0.27,
标准差:0.041960 不同批次间的保护层
厚度分项c(b)/mm对数正态分布 均值:43.0,
标准差:9.2− 同一批次内的保护层
厚度分项c(a)/mm正态分布 均值:0,
标准差:3.7130 不同批次间的扩散系数分项$D_{{\rm{a}}0}^{({\rm{b}})} $/(×10−12 m2/s) 对数正态分布 均值:4.35,
标准差:1.44− 同一批次内的扩散系数分项$D_{{\rm{a}}0}^{({\rm{a}})} $/(×10−12 m2/s) 正态分布 均值:0,
标准差:0.50250 指数衰减系数n 正态分布 均值:0.2,
标准差:0.01− 不均匀锈蚀程度参数κ 均匀分布 下界:4,
上界:8− 锈蚀电流密度icor1/(μA/cm2) 对数正态分布 均值:0.67,
标准差:0.392000 锈蚀电流密度icor2/(μA/cm2) 对数正态分布 均值:8.80,
标准差:5.102000 劣化等级 外观劣化程度的描述性准则(裂缝) 量化准则 A 无 p0≤1% B 局部有微小锈蚀裂缝,裂缝宽度小于0.3 mm p0 > 1%
且 p0.3≤1%C 裂缝较多,部分为顺筋连续裂缝,裂缝宽度在0.3 mm~3.0 mm之间 p0.3 > 1%
且p3.0≤1%D 大面积顺筋连续裂缝,裂缝宽度大于3.0 mm p3.0 > 1% 表 3 模拟结果与实际损坏程度的对比
Table 3. Comparisons between the simulated results and the actual damage proportions
劣化等级 模拟结果/(%) 实际损坏程度 A 11 31/144=0.22 B 13 54/144=0.38 C 63 7/144=0.05 D 13 52/144=0.36 -
[1] 干伟忠, 金伟良, Raupach M. 海洋环境混凝土结构耐久性原位监测原理和剩余寿命预报[J]. 工程力学, 2011, 28(增刊 2): 78 − 84, 96.Gan Weizhong, Jin Weiliang, Raupach M. The in-situ monitoring principles and the residual life prediction of the durability of concrete structure in marine environment [J]. Engineering Mechanics, 2011, 28(Suppl 2): 78 − 84, 96. (in Chinese) [2] 庞龙, 应宗权, 范志宏, 等. 基于实测数据的港工混凝土结构环境荷载模型及耐久性分析[J]. 工程力学, 2016, 33(增刊): 168 − 172. doi: 10.6052/j.issn.1000-4750.2015.04.S019Pang Long, Ying Zongquan, Fan Zhihong, et al. Environmental load model and durability analysis of marine concrete structures based on in-situ test data in south China [J]. Engineering Mechanics, 2016, 33(Suppl): 168 − 172. (in Chinese) doi: 10.6052/j.issn.1000-4750.2015.04.S019 [3] Der Kiureghian A, Ke B J. The stochastic finite element method in structural reliability [J]. Probabilistic Engineering Mechanics, 1988, 3(2): 83 − 91. doi: 10.1016/0266-8920(88)90019-7 [4] Vu K, Stewart M G. Predicting the likelihood and extent of reinforced concrete corrosion-induced cracking [J]. Journal of Structural Engineering, 2005, 131(11): 1681 − 1689. doi: 10.1061/(ASCE)0733-9445(2005)131:11(1681) [5] Li Q, Ye X. Surface deterioration analysis for probabilistic durability design of RC structures in marine environment [J]. Structural Safety, 2018, 75: 13 − 23. doi: 10.1016/j.strusafe.2018.05.007 [6] Noh Y, Choi K K, Du L. Reliability-based design optimization of problems with correlated input variables using a Gaussian Copula [J]. Structural and Multidisciplinary Optimization, 2009, 38(1): 1 − 16. doi: 10.1007/s00158-008-0277-9 [7] Zhang R, Castel A, François R. The corrosion pattern of reinforcement and its influence on serviceability of reinforced concrete members in chloride environment [J]. Cement and Concrete Research, 2009, 39(11): 1077 − 1086. doi: 10.1016/j.cemconres.2009.07.025 [8] Collepardi M, Marcialis A, Turriziani R. Penetration of chloride ions into cement pastes and concretes [J]. Journal of the American Ceramic Society, 1972, 55(10): 534 − 535. doi: 10.1111/j.1151-2916.1972.tb13424.x [9] Vidal T, Castel A, François R. Analyzing crack width to predict corrosion in reinforced concrete [J]. Cement and Concrete Research, 2004, 34(1): 165 − 174. doi: 10.1016/S0008-8846(03)00246-1 [10] Khan I, François R, Castel A. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams [J]. Cement and Concrete Research, 2014, 56: 84 − 96. doi: 10.1016/j.cemconres.2013.11.006 [11] Bamforth P B. The derivation of input data for modelling chloride ingress from eight-year UK coastal exposure trials [J]. Magazine of Concrete Research, 1999, 51(2): 87 − 96. doi: 10.1680/macr.1999.51.2.87 [12] Zhang R, Castel A, François R. Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process [J]. Cement and Concrete Research, 2010, 40(3): 415 − 425. doi: 10.1016/j.cemconres.2009.09.026 [13] JTJ 302−2006, 港口水工建筑物检测与技术评估规范[S]. 北京: 人民交通出版社, 2007.JTJ 302−2006, Technical specification for detection and assessment of harbour and marine structures [S]. Beijing: China Communications Press, 2007. (in Chinese) -