ANALYSIS OF MECHANICAL PERFORMANCES OF CYLINDER IN 3D CONCRETE PRINTING PROCESSES
-
摘要: 3D混凝土打印(3DCP)技术由于其快速制造的优势,在过去几十年里得到了迅速的发展。然而,在印刷过程中仍有许多问题需要解决,例如:目前的相关研究尚未建立能准确预测与分析3DCP圆柱壳的力学模型。该文利用 Goldenveizer-Novozhilov壳体理论,加入打印进程参数,包括打印速率、打印材料固化特征、柱壳几何特征、以及自重作用影响,对3DCP圆柱壳的两种破坏机理:弹性屈曲和塑性破坏进行了分析,并在此基础上描述了柱壳形直立墙弹性屈曲与塑性坍塌间的竞争关系。参数模型、有限元模拟与已有相关试验的对比结果表明:该文提出的模型可以较好地预测3DCP圆柱壳的失效高度与失效形式,并为找寻最佳打印参数集给予理论指导。Abstract: Because of the advantages in rapid manufacturing, 3D concrete printing (3DCP) technology has developed rapidly in the past decades. However, there are still many problems to be solved in the printing process. For example, the current related studies have not established a mechanical model that can accurately predict and analyze 3DCP cylinders. Two failure mechanisms of 3DCP cylindrical shell, namely elastic buckling and plastic failure, are analyzed by using Goldenveizer-Novozhilov shell theory and adding printing process parameters, including printing rate, curing characteristics of printing materials, geometric characteristics of 3DCP cylinders and the effect of dead weight. On this basis, the competitive relationship between elastic buckling and plastic collapse of cylindrical shell vertical wall is described. The results of parameter model and finite element simulation were compared with the existing experiments, which verify that the proposed model can better predict the failure length and failure form of 3DCP cylinders, and provide a theoretical guidance for finding the optimal printing parameters set.
-
Key words:
- 3D concrete printing /
- cylinder /
- plastic collapse /
- elastic buckling /
- competitive relationship
-
表 1 无量纲参数与其物理含义
Table 1. Dimensionless parameter and physical significance
无量纲参数 补充公式 物理含义 $\overline w = {w / h}$ 径向位移 $\overline r = {\left( {\dfrac{{\rho gh}}{{{D_0}}}} \right)^{{1 / 3}}}r$ ${D_0} = \dfrac{{{E_0}{h^3}}}{{12\left( {1 - {\nu ^2}} \right)}}$ 柱壳半径 $\overline h = {\left( {\dfrac{{\rho gh}}{{{D_0}}}} \right)^{{1 / 3}}}h$ 柱壳厚度 ${\overline l_{\rm cr} } = {\overline \xi _{\rm{E}}}\kappa = {\left( {\dfrac{ {\rho gh} }{ { {D_0} } } } \right)^{ {1 / 3} } }{l_{\rm cr} }$ $\kappa = \dfrac{ { {\xi _{\rm{E}}}l} }{ {\dot l} }$ 屈曲长度 ${\overline \xi _{\rm{E} } } = {\left( {\dfrac{ { {D_0} } }{ {\rho gh} } } \right)^{ {1 /3} } }\dfrac{ { {\xi _{\rm{E}}} } }{ {\dot l} }$ 固化速率 -
[1] KHOSHNEVIS B, DUTTON R. Innovative rapid prototyping process makes large sized, smooth surfaced complex shapes in a wide variety of materials [J]. Materials Technology, 1998, 13(2): 53 − 56. doi: 10.1080/10667857.1998.11752766 [2] BUSWELL R, LEAL DE SILVA W, JONES S, et al. 3D printing using concrete extrusion: A roadmap for research [J]. Cement and Concrete Research, 2018, 112: 37 − 49. doi: 10.1016/j.cemconres.2018.05.006 [3] WONG K V, HERNANDEZ A. A Review of Additive Manufacturing [J]. Isrn Mechanical Engineering, 2012, 2012: 30 − 38. [4] CESARETTI G, DINI E, DE KESTELIER X, et al. Building components for an outpost on the lunar soil by means of a novel 3D printing technology [J]. Acta Astronautica, 2014, 93: 430 − 450. doi: 10.1016/j.actaastro.2013.07.034 [5] MECHTCHERINE V, BOS F P, PERROT A, et al. Extrusion-based additive manufacturing with cement-based materialsc production steps, processes, and their underlying physics: A review [J]. Cement and Concrete Research, 2020, 132: 106037. doi: 10.1016/j.cemconres.2020.106037 [6] DE SCHUTTER G, LESAGE K, MECHTCHERINE V, et al. Vision of 3D printing with concrete technical, economic and environmental potentials [J]. Cement and Concrete Research, 2018, 112: 25 − 36. doi: 10.1016/j.cemconres.2018.06.001 [7] MA G, WANG L, JU Y. State-of-the-art of 3D printing technology of cementitious materialan emerging technique for construction [J]. Science China Technological Sciences, 2018, 61(4): 475 − 495. doi: 10.1007/s11431-016-9077-7 [8] FATEMEH H, FARHAD A. Additive manufacturing of cementitious composites: Materials, methods, potentials, and challenges [J]. Construction and Building Materials, 2019, 218: 582 − 609. doi: 10.1016/j.conbuildmat.2019.05.140 [9] MOHAN M K, RAHUL A, DE SCHUTTER G, et al. Extrusion based concrete 3D printing from a material perspective: A state-of-the-art review [J]. Cement and Concrete Composites, 2021, 115: 103855. doi: 10.1016/j.cemconcomp.2020.103855 [10] ROUSSEL N, SPANGENBERG J, WALLEVIK J, et al. Numerical simulations of concrete processing: From standard formative casting to additive manufacturing [J]. Cement and Concrete Research, 2020, 135: 106075. doi: 10.1016/j.cemconres.2020.106075 [11] NAIR S, PANDA S, SANTHANAM M, et al. A critical examination of the influence of material characteristics and extruder geometry on 3D printing of cementitious binders [J]. Cement and Concrete Composites, 2020, 112: 103671. doi: 10.1016/j.cemconcomp.2020.103671 [12] COMMINAL R, SILVA W, ANDERSEN T J, et al. Modelling of 3D concrete printing based on computational fluid dynamics [J]. Cement and Concrete Research, 2020, 138: 106256. doi: 10.1016/j.cemconres.2020.106256 [13] COMMINAL R, SERDECZNY M P, PEDERSEN D B, et al. Motion planning and numerical simulation of material deposition at corners in extrusion additive manufacturing [J]. Additive Manufacturing, 2019, 29: 100753. doi: 10.1016/j.addma.2019.06.005 [14] KRUGER J, ZERANKA S, ZIJL G V. A rheology-based quasi-static shape retention model for digitally fabricated concrete [J]. Construction and Building Materials, 2020, 254: 119241. doi: 10.1016/j.conbuildmat.2020.119241 [15] KRUGER J, CHO S, ZERANKA S, et al. 3D concrete printer parameter optimisation for high rate digital construction avoiding plastic collapse [J]. Composites Part B: Engineering, 2020, 183: 107660. doi: 10.1016/j.compositesb.2019.107660 [16] JAYATHILAKA R, RAJEEV P, SANJAYAN J G. Yield stress criteria to assess the buildability of 3D concrete printing [J]. Construction and Building Materials, 2020, 240: 117989. doi: 10.1016/j.conbuildmat.2019.117989 [17] WOLFS R, BOS F P, SALET T. Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing [J]. Cement and Concrete Research, 2018, 106: 103 − 116. doi: 10.1016/j.cemconres.2018.02.001 [18] WOLFS R, BOS F P, SALET T. Triaxial compression testing on early age concrete for numerical analysis of 3D concrete printing [J]. Cement and Concrete Composites, 2019, 104: 103344. doi: 10.1016/j.cemconcomp.2019.103344 [19] CASAGRANDEA L, ESPOSITOB L, MENNA C, et al. Effect of testing procedures on buildability properties of 3D-printable concrete [J]. Construction and Building Materials, 2020, 245: 118286. doi: 10.1016/j.conbuildmat.2020.118286 [20] SUIKER A S J. Mechanical performance of wall structures in 3D printing processes: Theory, design tools and experiments [J]. International Journal of Mechanical Sciences, 2018, 137: 145 − 170. doi: 10.1016/j.ijmecsci.2018.01.010 [21] WOLFS R, SUIKER A. Structural failure during extrusion-based 3D printing processes [J]. International Journal of Advanced Manufacturing Technology, 2019, 104(1/2/3/4): 1 − 20. doi: 10.1007/s00170-018-2331-0 [22] OOMS T, VANTYGHEM G, COILE R V, et al. A parametric modelling strategy for the numerical simulation of 3D concrete printing with complex geometries [J]. Additive Manufacturing, 2020, 38: 101743. [23] 龙驭球, 崔京浩, 袁驷, 等. 力学筑梦中国[J]. 工程力学, 2018, 35(1): 1 − 54. doi: 10.6052/j.issn.1000-4750.2017.09.1000LONG Yuqiu, CUI Jinghao, YUAN Si, et al. Build ‘Chinese Dream’ with the assistance of mechanics [J]. Engineering Mechanics, 2018, 35(1): 1 − 54. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.09.1000 [24] REDDY J N, JR J H S. General buckling of stiffened circular cylindrical shells according to a layerwise theory [J]. Computers and Structures, 1993, 49(4): 605 − 616. doi: 10.1016/0045-7949(93)90065-L [25] 周承倜. 弹性稳定理论[M]. 四川: 四川人民出版社, 1982.ZHOU Chengti. Elastic stability theory [M]. Sichuan: Sichuan People's Publishing House, 1982. (in Chinese) [26] TIMOSHENKO S P, GERE J M. Theory of elastic stability [M]. 2nd ed. New York: Dover Publications Inc, 2009. [27] TIMOSHENKO S P, WOINOWSKY-KRIEGER S. Theory of plates and shells [M]. Singapore: McGraw-Hill Book Company, 1959. [28] JOHNS D J. Self-weight-buckling of vertical circular cylindrical shells [J]. AIAA Journal, 2015, 11(3): 392 − 393. [29] LIM C W, MA Y F. Computational p-element method on the effects of thickness and length on self-weight buckling of thin cylindrical shells via various shell theories [J]. Computational Mechanics, 2003, 31(5): 400 − 408. doi: 10.1007/s00466-003-0442-3 [30] 吴静云, 赵阳. 外压作用下椭圆截面柱壳的弹性屈曲[J]. 工程力学, 2016, 33(6): 146 − 153.WU Jingyun, ZHAO Yang. Elastic buckling of elliptical cylindrical shells under external pressure [J]. Engineering Mechanics, 2016, 33(6): 146 − 153. (in Chinese) [31] 王永亮. 含裂纹损伤圆弧曲梁弹性屈曲的有限元网格自适应分析[J]. 工程力学, 2021, 38(2): 8 − 15, 35. doi: 10.6052/j.issn.1000-4750.2020.03.0173WANG Yongliang. Adaptive mesh refinement analysis of finite element method for elastic buckling of cracked circularly curved beams [J]. Engineering Mechanics, 2021, 38(2): 8 − 15, 35. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0173 [32] 梁斌, 刘小宛, 李戎, 等. 充液环肋圆柱壳耦合振动的波动解[J]. 工程力学, 2016, 33(6): 9 − 14. doi: 10.6052/j.issn.1000-4750.2014.11.0940LIANG Bin, LIU Xiaowan, LI Rong, et al. Study on vibration of fluid-filled cylindrical shells with ring-stiffener using wave propagation approach [J]. Engineering Mechanics, 2016, 33(6): 9 − 14. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.11.0940 [33] 余杨, 李振眠, 余建星, 等. 穿越平移断层海底埋地管道屈曲失效分析[J]. 工程力学, 2022, 39(9): 242 − 256. doi: 10.6052/j.issn.1000-4750.2021.05.0391YU Yang, LI Zhenmian, YU Jianxing, et al. Buckling failure analysis of subsea buried pipeline crossing strike-slip fault [J]. Engineering Mechanics, 2022, 39(9): 242 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0391 [34] 李振眠, 余杨, 余建星, 等. 基于向量有限元的深水管道屈曲行为分析[J]. 工程力学, 2021, 38(4): 247 − 256. doi: 10.6052/j.issn.1000-4750.2020.06.0357LI Zhenmian, YU Yang, YU Jianxing, et al. Buckling analysis of deepwater pipelines by vector form intrinsic finite element method [J]. Engineering Mechanics, 2021, 38(4): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0357 [35] 宋广凯, 孙博华. 易拉罐在轴-侧-扭-内压联合作用下的屈曲地貌[J]. 力学学报, 2021, 53(2): 448 − 466. doi: 10.6052/0459-1879-20-315SONG Guangkai, SUN Bohua. Buckling landscape of can under the combined action of axial compression-torsion-lateral poking-internal pressure [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 448 − 466. (in Chinese) doi: 10.6052/0459-1879-20-315 [36] 喻莹, 徐新卓, 罗尧治. 基于Kresling折纸构型的空间结构可控失稳模式研究[J]. 工程力学, 2021, 38(8): 75 − 84. doi: 10.6052/j.issn.1000-4750.2020.08.0545YU Ying, XU Xinzhuo, LUO Yaozhi. Programmable instability of spatial structures based on Kresling origami [J]. Engineering Mechanics, 2021, 38(8): 75 − 84. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0545 [37] KOITER W T. On the stability of elastic equilibrium [M]. Washington, D.C.: National Aeronautics and Space Administration, 1967. [38] SUN B H. Buckling problems of sandwich shells [R]. Netherlands: Delft University of Technology, 1992. [39] YEH K Y, SUN B H, RIMROTT F P J. Buckling of imperfect sandwich cones under axial compression-equivalent-cylinder approach: Part I [J]. Technische Mechanik, 1994, 15(1): 1 − 12. [40] YEH K Y, SUN B H, RIMROTT F P J. Buckling of imperfect sandwich cones under axial compression-equivalent-cylinder approach: Part II [J]. Technische Mechanik, 1995, 15(2): 1 − 12. [41] SUN B. On the buckling of structures [J]. Technische Mechanik, 1995, 15(2): 129 − 140. [42] JIAO Peng, CHEN Zhiping, MA He, et al. Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 1: Experimental study [J]. Thin-Walled Structures, 2021, 166: 108118. doi: 10.1016/j.tws.2021.108118 [43] JIAO Peng, CHEN Zhiping, MA He, et al. Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 1: Numerical study [J]. Thin-Walled Structures, 2021, 169: 108330. doi: 10.1016/j.tws.2021.108330 [44] EVKIN A. Analytical model of local buckling of axially compressed cylindrical shells [J]. Thin-Walled Structures, 2021, 168: 108261. doi: 10.1016/j.tws.2021.108261 -