留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D混凝土打印进程中柱壳结构的力学性能研究

刘轩廷 孙博华

刘轩廷, 孙博华. 3D混凝土打印进程中柱壳结构的力学性能研究[J]. 工程力学. doi: 10.6052/j.issn.1000-4750.2021.08.0605
引用本文: 刘轩廷, 孙博华. 3D混凝土打印进程中柱壳结构的力学性能研究[J]. 工程力学. doi: 10.6052/j.issn.1000-4750.2021.08.0605
LIU Xuan-ting, SUN Bo-hua. ANALYSIS OF MECHANICAL PERFORMANCES OF CYLINDER IN 3D CONCRETE PRINTING PROCESSES[J]. Engineering Mechanics. doi: 10.6052/j.issn.1000-4750.2021.08.0605
Citation: LIU Xuan-ting, SUN Bo-hua. ANALYSIS OF MECHANICAL PERFORMANCES OF CYLINDER IN 3D CONCRETE PRINTING PROCESSES[J]. Engineering Mechanics. doi: 10.6052/j.issn.1000-4750.2021.08.0605

3D混凝土打印进程中柱壳结构的力学性能研究

doi: 10.6052/j.issn.1000-4750.2021.08.0605
详细信息
    作者简介:

    刘轩廷(1996−),男(畲族),江西兴国人,硕士生,主要从事3D混凝土打印进程力学研究(E-mail: liuxuanting@xauat.edu.cn)

    通讯作者:

    孙博华(1963−),男,江苏徐州人,教授,博士,南非科学院院士,主要从事应用数学与力学研究(E-mail: sunbohua@xauat.edu.cn)

  • 中图分类号: TU33+3;O343.9

ANALYSIS OF MECHANICAL PERFORMANCES OF CYLINDER IN 3D CONCRETE PRINTING PROCESSES

  • 摘要: 3D混凝土打印(3DCP)技术由于其快速制造的优势,在过去几十年里得到了迅速的发展。然而,在印刷过程中仍有许多问题需要解决,例如:目前的相关研究尚未建立能准确预测与分析3DCP圆柱壳的力学模型。该文利用 Goldenveizer-Novozhilov壳体理论,加入打印进程参数,包括打印速率、打印材料固化特征、柱壳几何特征、以及自重作用影响,对3DCP圆柱壳的两种破坏机理:弹性屈曲和塑性破坏进行了分析,并在此基础上描述了柱壳形直立墙弹性屈曲与塑性坍塌间的竞争关系。参数模型、有限元模拟与已有相关试验的对比结果表明:该文提出的模型可以较好地预测3DCP圆柱壳的失效高度与失效形式,并为找寻最佳打印参数集给予理论指导。
  • 图  1  柱壳在自重作用下示意图

    Figure  1.  Cylinder under self-weight

    图  2  3D打印进程中失效机制示意图

    Figure  2.  Failure mechanism of cylinder in 3D concrete printing (3DCP) processes

    图  3  柱壳打印截面示意图

    Figure  3.  3D printed section of a cylinder

    图  4  塑性坍塌长度${\overline l_{\rm{p}}}$随固化速率${\overline \xi _{\text{σ}} }$变化曲线图

    Figure  4.  Plastic collapse length ${\overline l_{\rm{p}}}$ vs. curing rate ${\overline \xi _{\text{σ}} }$

    图  5  无量纲屈曲长度 ${\overline l_{{\rm{cr}}}}$随无量纲固化速率${\overline \xi _{\rm{E}}}$变化曲线

    Figure  5.  Critical buckling length ${\overline l_{{\rm{cr}}}}$ vs. curing rate ${\overline \xi _{\rm{E}}}$

    图  6  3DCP圆柱壳临界屈曲长度${\overline l_{{\rm{cr}}}}$随固化速率${\overline \xi _{\rm{E}}}$变化曲线

    Figure  6.  Critical buckling length ${\overline l_{{\rm{cr}}}}$ vs. curing rate ${\overline \xi _{\rm{E}}}$ for 3DCP cylinder

    图  7  3DCP圆柱壳失效机制

    Figure  7.  The failure mechanism of 3DCP cylinder

    图  8  3DCP圆柱壳圆角梯形层截面示意图

    Figure  8.  Rounded trapezoid schematic diagram of 3DCP cylinder model

    图  9  FEM与实验对比图

    Figure  9.  Comparison of FEM and experiment

    图  10  3DCP圆柱壳圆角矩形层截面示意图

    Figure  10.  Rounded rectangle schematic diagram of 3DCP cylinder model

    图  11  最大径向位移$ {w_{\max }} $随层高变化曲线

    Figure  11.  Max. radial deflection $ {w_{\max }} $ vs. layer number

    图  12  3DCP圆柱壳无量纲失效长度$\bar{l}$随径厚比${r \mathord{\left/ {\vphantom {r h}} \right. } h}$变化图

    Figure  12.  The dimensionless failure length $\bar{l}$ of 3DCP cylinders vs. the radius-thickness ratio ${r \mathord{\left/ {\vphantom {r h}} \right. } h}$

    表  1  无量纲参数与其物理含义

    Table  1.   Dimensionless parameter and physical significance

    无量纲参数补充公式 物理含义
    $\overline w = {w / h}$径向位移
    $\overline r = {\left( {\dfrac{{\rho gh}}{{{D_0}}}} \right)^{{1 / 3}}}r$${D_0} = \dfrac{{{E_0}{h^3}}}{{12\left( {1 - {\nu ^2}} \right)}}$柱壳半径
    $\overline h = {\left( {\dfrac{{\rho gh}}{{{D_0}}}} \right)^{{1 / 3}}}h$柱壳厚度
    ${\overline l_{\rm cr} } = {\overline \xi _{\rm{E}}}\kappa = {\left( {\dfrac{ {\rho gh} }{ { {D_0} } } } \right)^{ {1 / 3} } }{l_{\rm cr} }$$\kappa = \dfrac{ { {\xi _{\rm{E}}}l} }{ {\dot l} }$屈曲长度
    ${\overline \xi _{\rm{E} } } = {\left( {\dfrac{ { {D_0} } }{ {\rho gh} } } \right)^{ {1 /3} } }\dfrac{ { {\xi _{\rm{E}}} } }{ {\dot l} }$固化速率
    下载: 导出CSV

    表  2  相关工作失效层数对比

    Table  2.   Comparison of failure layer number with related work

    相关工作 实验模拟理论
    Wolfs等[17]2946
    Ooms等[22]42.69~52
    本文工作2925.8
    下载: 导出CSV
  • [1] Khoshnevis B, Dutton R. Innovative rapid prototyping process makes large sized, smooth surfaced complex shapes in a wide variety of materials [J]. Materials Technology, 1998, 13(2): 53 − 56. doi: 10.1080/10667857.1998.11752766
    [2] Buswell R, Leal de Silva W, Jones S, et al. 3D printing using concrete extrusion: A roadmap for research [J]. Cement and Concrete Research, 2018, 112: 37 − 49. doi: 10.1016/j.cemconres.2018.05.006
    [3] Wong K V, Hernandez A. A Review of Additive Manufacturing [J]. Isrn Mechanical Engineering, 2012, 2012: 30 − 38.
    [4] Cesaretti G, Dini E, De Kestelier X, et al. Building components for an outpost on the lunar soil by means of a novel 3D printing technology [J]. Acta Astronautica, 2014, 93: 430 − 450. doi: 10.1016/j.actaastro.2013.07.034
    [5] Mechtcherine V, Bos F P, Perrot A, et al. Extrusion-based additive manufacturing with cement-based materialsc production steps, processes, and their underlying physics: A review [J]. Cement and Concrete Research, 2020, 132: 106037. doi: 10.1016/j.cemconres.2020.106037
    [6] De Schutter G, Lesage K, Mechtcherine V, et al. Vision of 3D printing with concrete technical, economic and environmental potentials [J]. Cement and Concrete Research, 2018, 112: 25 − 36. doi: 10.1016/j.cemconres.2018.06.001
    [7] Ma G, Wang L, Ju Y. State-of-the-art of 3D printing technology of cementitious materialan emerging technique for construction [J]. Science China Technological Sciences, 2018, 61(4): 475 − 495. doi: 10.1007/s11431-016-9077-7
    [8] Fatemeh H, Farhad A. Additive manufacturing of cementitious composites: Materials, methods, potentials, and challenges [J]. Construction and Building Materials, 2019, 218: 582 − 609. doi: 10.1016/j.conbuildmat.2019.05.140
    [9] Mohan M K, Rahul A, De Schutter G, et al. Extrusion based concrete 3D printing from a material perspective: A state-of-the-art review [J]. Cement and Concrete Composites, 2021, 115: 103855. doi: 10.1016/j.cemconcomp.2020.103855
    [10] Roussel N, Spangenberg J, Wallevik J, et al. Numerical simulations of concrete processing: From standard formative casting to additive manufacturing [J]. Cement and Concrete Research, 2020, 135: 106075. doi: 10.1016/j.cemconres.2020.106075
    [11] Nair S, Panda S, Santhanam M, et al. A critical examination of the influence of material characteristics and extruder geometry on 3D printing of cementitious binders [J]. Cement and Concrete Composites, 2020, 112: 103671. doi: 10.1016/j.cemconcomp.2020.103671
    [12] Comminal R, Silva W, Andersen T J, et al. Modelling of 3D concrete printing based on computational fluid dynamics [J]. Cement and Concrete Research, 2020, 138: 106256. doi: 10.1016/j.cemconres.2020.106256
    [13] Comminal R, Serdeczny M P, Pedersen D B, et al. Motion planning and numerical simulation of material deposition at corners in extrusion additive manufacturing [J]. Additive Manufacturing, 2019, 29: 100753. doi: 10.1016/j.addma.2019.06.005
    [14] Kruger J, Zeranka S, Zijl G V. A rheology-based quasi-static shape retention model for digitally fabricated concrete [J]. Construction and Building Materials, 2020, 254: 119241. doi: 10.1016/j.conbuildmat.2020.119241
    [15] Kruger J, Cho S, Zeranka S, et al. 3D concrete printer parameter optimisation for high rate digital construction avoiding plastic collapse [J]. Composites Part B: Engineering, 2020, 183: 107660. doi: 10.1016/j.compositesb.2019.107660
    [16] Jayathilaka R, Rajeev P, Sanjayan J G. Yield stress criteria to assess the buildability of 3D concrete printing [J]. Construction and Building Materials, 2020, 240: 117989. doi: 10.1016/j.conbuildmat.2019.117989
    [17] Wolfs R, Bos F P, Salet T. Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing [J]. Cement and Concrete Research, 2018, 106: 103 − 116. doi: 10.1016/j.cemconres.2018.02.001
    [18] Wolfs R, Bos F P, Salet T. Triaxial compression testing on early age concrete for numerical analysis of 3D concrete printing [J]. Cement and Concrete Composites, 2019, 104: 103344. doi: 10.1016/j.cemconcomp.2019.103344
    [19] Casagrandea L, Espositob L, Menna C, et al. Effect of testing procedures on buildability properties of 3D-printable concrete [J]. Construction and Building Materials, 2020, 245: 118286. doi: 10.1016/j.conbuildmat.2020.118286
    [20] Suiker A S J. Mechanical performance of wall structures in 3D printing processes: Theory, design tools and experiments [J]. International Journal of Mechanical Sciences, 2018, 137: 145 − 170. doi: 10.1016/j.ijmecsci.2018.01.010
    [21] Wolfs R, Suiker A. Structural failure during extrusion-based 3D printing processes [J]. International Journal of Advanced Manufacturing Technology, 2019, 104(1/2/3/4): 1 − 20. doi: 10.1007/s00170-018-2331-0
    [22] Ooms T, Vantyghem G, Coile R V, et al. A parametric modelling strategy for the numerical simulation of 3D concrete printing with complex geometries [J]. Additive Manufacturing, 2020, 38: 101743.
    [23] 龙驭球, 崔京浩, 袁驷, 陆新征. 力学筑梦中国[J]. 工程力学, 2018, 35(1): 1 − 54. doi: 10.6052/j.issn.1000-4750.2017.09.1000

    Long Yuqiu, Cui Jinghao, Yuan Si, Lu Xinzheng. Build ‘Chinese Dream’ with the assistance of mechanics [J]. Engineering Mechanics, 2018, 35(1): 1 − 54. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.09.1000
    [24] Reddy J N, Jr J H S. General buckling of stiffened circular cylindrical shells according to a layerwise theory [J]. Computers and Structures, 1993, 49(4): 605 − 616. doi: 10.1016/0045-7949(93)90065-L
    [25] 周承倜. 弹性稳定理论[M]. 四川: 四川人民出版社, 1982.

    Zhou Chengti. Elastic stability theory [M]. Sichuan: Sichuan People's Publishing House, 1982. (in Chinese)
    [26] Timoshenko S P, Gere J M. Theory of elastic stability [M]. 2nd ed. New York: Dover Publications Inc, 2009.
    [27] Timoshenko S P, Woinowsky-Krieger S. Theory of plates and shells [M]. Singapore: McGraw-Hill Book Company, 1959.
    [28] Johns D J. Self-weight-buckling of vertical circular cylindrical shells. [J]. Aiaa Journal, 2015, 11(3): 392 − 393.
    [29] Lim C W, Ma Y F. Computational p-element method on the effects of thickness and length on self-weight buckling of thin cylindrical shells via various shell theories [J]. Computational Mechanics, 2003, 31(5): 400 − 408. doi: 10.1007/s00466-003-0442-3
    [30] 吴静云, 赵阳. 外压作用下椭圆截面柱壳的弹性屈曲[J]. 工程力学, 2016, 33(6): 146 − 153.

    Wu Jingyun, Zhao Yang. Elastic buckling of elliptical cylindrical shells under external pressure [J]. Engineering Mechanics, 2016, 33(6): 146 − 153. (in Chinese)
    [31] 王永亮. 含裂纹损伤圆弧曲梁弹性屈曲的有限元网格自适应分析[J]. 工程力学, 2021, 38(2): 8 − 15, 35. doi: 10.6052/j.issn.1000-4750.2020.03.0173

    Wang Yongliang. Adaptive mesh refinement analysis of finite element method for elastic buckling of cracked circularly curved beams [J]. Engineering Mechanics, 2021, 38(2): 8 − 15, 35. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0173
    [32] 梁斌, 刘小宛, 李戎, 等. 充液环肋圆柱壳耦合振动的波动解[J]. 工程力学, 2016, 33(6): 9 − 14. doi: 10.6052/j.issn.1000-4750.2014.11.0940

    Liang Bin, Liu Xiaowan, Li Rong, et al. Study on vibration of fluid-filled cylindrical shells with ring-stiffener using wave propagation approach [J]. Engineering Mechanics, 2016, 33(6): 9 − 14. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.11.0940
    [33] 余杨, 李振眠, 余建星, 等. 穿越平移断层海底埋地管道屈曲失效分析[J]. 工程力学, $ref.ref_year. doi: 10.6052/j.issn.1000-4750.2021.05.0391

    Yu Yang, Li Zhenmian, Yu Jianxing, et al. Buckling failure analysis of subsea buried pipeline crossing strike-slip fault [J]. Engineering Mechanics, 2016. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0391
    [34] 李振眠, 余杨, 余建星, 等. 基于向量有限元的深水管道屈曲行为分析[J]. 工程力学, 2021, 38(4): 247 − 256. doi: 10.6052/j.issn.1000-4750.2020.06.0357

    Li Zhenmian, Yu Yang, Yu Jianxing, et al. Buckling analysis of deepwater pipelines by vector form intrinsic finite element method [J]. Engineering Mechanics, 2021, 38(4): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0357
    [35] 宋广凯, 孙博华. 易拉罐在轴-侧-扭-内压联合作用下的屈曲地貌[J]. 力学学报, 2021, 53(2): 448 − 466. doi: 10.6052/0459-1879-20-315

    Song Guangkai, Sun Bohua. Buckling landscape of can under the combined action of axial compression-torsion-lateral poking-internal pressure [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 448 − 466. (in Chinese) doi: 10.6052/0459-1879-20-315
    [36] 喻莹, 徐新卓, 罗尧治. 基于Kresling折纸构型的空间结构可控失稳模式研究[J]. 工程力学, 2021, 38(8): 75 − 84. doi: 10.6052/j.issn.1000-4750.2020.08.0545

    Yu Ying, Xu Xinzhuo, Luo Yaozhi. Programmable instability of spatial structures based on Kresling origami [J]. Engineering Mechanics, 2021, 38(8): 75 − 84. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0545
    [37] Koiter W T. On the stability of elastic equilibrium [M]. Washington, D.C.: National Aeronautics and Space Administration, 1967.
    [38] Sun B H. Buckling problems of sandwich shells [R]. Netherlands: Delft University of Technology, 1992.
    [39] Yeh K Y, Sun B H, Rimrott F P J. Buckling of imperfect sandwich cones under axial compression-equivalent-cylinder approach: Part I [J]. Technische Mechanik, 1994, 15(1): 1 − 12.
    [40] Yeh K Y, Sun B H, Rimrott F P J. Buckling of imperfect sandwich cones under axial compression-equivalent-cylinder approach: Part II [J]. Technische Mechanik, 1995, 15(2): 1 − 12.
    [41] Sun B. On the buckling of structures [J]. Technische Mechanik, 1995, 15(2): 129 − 140.
    [42] Jiao Peng, Chen Zhiping, Ma He, et al. Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 1: Experimental study [J]. Thin-Walled Structures, 2021, 166: 108118. doi: 10.1016/j.tws.2021.108118
    [43] Jiao Peng, Chen Zhiping, Ma He, et al. Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 1: Numerical study [J]. Thin-Walled Structures, 2021, 169: 108330. doi: 10.1016/j.tws.2021.108330
    [44] Evkin A. Analytical model of local buckling of axially compressed cylindrical shells [J]. Thin-Walled Structures, 2021, 168: 108261. doi: 10.1016/j.tws.2021.108261
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  58
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-05
  • 录用日期:  2021-11-02
  • 修回日期:  2021-10-21
  • 网络出版日期:  2021-11-02

目录

    /

    返回文章
    返回