Citation: | LIU Xuan-ting, SUN Bo-hua. ANALYSIS OF MECHANICAL PERFORMANCES OF CYLINDER IN 3D CONCRETE PRINTING PROCESSES[J]. Engineering Mechanics, 2023, 40(1): 180-189, 200. doi: 10.6052/j.issn.1000-4750.2021.08.0605 |
[1] |
KHOSHNEVIS B, DUTTON R. Innovative rapid prototyping process makes large sized, smooth surfaced complex shapes in a wide variety of materials [J]. Materials Technology, 1998, 13(2): 53 − 56. doi: 10.1080/10667857.1998.11752766
|
[2] |
BUSWELL R, LEAL DE SILVA W, JONES S, et al. 3D printing using concrete extrusion: A roadmap for research [J]. Cement and Concrete Research, 2018, 112: 37 − 49. doi: 10.1016/j.cemconres.2018.05.006
|
[3] |
WONG K V, HERNANDEZ A. A Review of Additive Manufacturing [J]. Isrn Mechanical Engineering, 2012, 2012: 30 − 38.
|
[4] |
CESARETTI G, DINI E, DE KESTELIER X, et al. Building components for an outpost on the lunar soil by means of a novel 3D printing technology [J]. Acta Astronautica, 2014, 93: 430 − 450. doi: 10.1016/j.actaastro.2013.07.034
|
[5] |
MECHTCHERINE V, BOS F P, PERROT A, et al. Extrusion-based additive manufacturing with cement-based materialsc production steps, processes, and their underlying physics: A review [J]. Cement and Concrete Research, 2020, 132: 106037. doi: 10.1016/j.cemconres.2020.106037
|
[6] |
DE SCHUTTER G, LESAGE K, MECHTCHERINE V, et al. Vision of 3D printing with concrete technical, economic and environmental potentials [J]. Cement and Concrete Research, 2018, 112: 25 − 36. doi: 10.1016/j.cemconres.2018.06.001
|
[7] |
MA G, WANG L, JU Y. State-of-the-art of 3D printing technology of cementitious materialan emerging technique for construction [J]. Science China Technological Sciences, 2018, 61(4): 475 − 495. doi: 10.1007/s11431-016-9077-7
|
[8] |
FATEMEH H, FARHAD A. Additive manufacturing of cementitious composites: Materials, methods, potentials, and challenges [J]. Construction and Building Materials, 2019, 218: 582 − 609. doi: 10.1016/j.conbuildmat.2019.05.140
|
[9] |
MOHAN M K, RAHUL A, DE SCHUTTER G, et al. Extrusion based concrete 3D printing from a material perspective: A state-of-the-art review [J]. Cement and Concrete Composites, 2021, 115: 103855. doi: 10.1016/j.cemconcomp.2020.103855
|
[10] |
ROUSSEL N, SPANGENBERG J, WALLEVIK J, et al. Numerical simulations of concrete processing: From standard formative casting to additive manufacturing [J]. Cement and Concrete Research, 2020, 135: 106075. doi: 10.1016/j.cemconres.2020.106075
|
[11] |
NAIR S, PANDA S, SANTHANAM M, et al. A critical examination of the influence of material characteristics and extruder geometry on 3D printing of cementitious binders [J]. Cement and Concrete Composites, 2020, 112: 103671. doi: 10.1016/j.cemconcomp.2020.103671
|
[12] |
COMMINAL R, SILVA W, ANDERSEN T J, et al. Modelling of 3D concrete printing based on computational fluid dynamics [J]. Cement and Concrete Research, 2020, 138: 106256. doi: 10.1016/j.cemconres.2020.106256
|
[13] |
COMMINAL R, SERDECZNY M P, PEDERSEN D B, et al. Motion planning and numerical simulation of material deposition at corners in extrusion additive manufacturing [J]. Additive Manufacturing, 2019, 29: 100753. doi: 10.1016/j.addma.2019.06.005
|
[14] |
KRUGER J, ZERANKA S, ZIJL G V. A rheology-based quasi-static shape retention model for digitally fabricated concrete [J]. Construction and Building Materials, 2020, 254: 119241. doi: 10.1016/j.conbuildmat.2020.119241
|
[15] |
KRUGER J, CHO S, ZERANKA S, et al. 3D concrete printer parameter optimisation for high rate digital construction avoiding plastic collapse [J]. Composites Part B: Engineering, 2020, 183: 107660. doi: 10.1016/j.compositesb.2019.107660
|
[16] |
JAYATHILAKA R, RAJEEV P, SANJAYAN J G. Yield stress criteria to assess the buildability of 3D concrete printing [J]. Construction and Building Materials, 2020, 240: 117989. doi: 10.1016/j.conbuildmat.2019.117989
|
[17] |
WOLFS R, BOS F P, SALET T. Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing [J]. Cement and Concrete Research, 2018, 106: 103 − 116. doi: 10.1016/j.cemconres.2018.02.001
|
[18] |
WOLFS R, BOS F P, SALET T. Triaxial compression testing on early age concrete for numerical analysis of 3D concrete printing [J]. Cement and Concrete Composites, 2019, 104: 103344. doi: 10.1016/j.cemconcomp.2019.103344
|
[19] |
CASAGRANDEA L, ESPOSITOB L, MENNA C, et al. Effect of testing procedures on buildability properties of 3D-printable concrete [J]. Construction and Building Materials, 2020, 245: 118286. doi: 10.1016/j.conbuildmat.2020.118286
|
[20] |
SUIKER A S J. Mechanical performance of wall structures in 3D printing processes: Theory, design tools and experiments [J]. International Journal of Mechanical Sciences, 2018, 137: 145 − 170. doi: 10.1016/j.ijmecsci.2018.01.010
|
[21] |
WOLFS R, SUIKER A. Structural failure during extrusion-based 3D printing processes [J]. International Journal of Advanced Manufacturing Technology, 2019, 104(1/2/3/4): 1 − 20. doi: 10.1007/s00170-018-2331-0
|
[22] |
OOMS T, VANTYGHEM G, COILE R V, et al. A parametric modelling strategy for the numerical simulation of 3D concrete printing with complex geometries [J]. Additive Manufacturing, 2020, 38: 101743.
|
[23] |
龙驭球, 崔京浩, 袁驷, 等. 力学筑梦中国[J]. 工程力学, 2018, 35(1): 1 − 54. doi: 10.6052/j.issn.1000-4750.2017.09.1000
LONG Yuqiu, CUI Jinghao, YUAN Si, et al. Build ‘Chinese Dream’ with the assistance of mechanics [J]. Engineering Mechanics, 2018, 35(1): 1 − 54. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.09.1000
|
[24] |
REDDY J N, JR J H S. General buckling of stiffened circular cylindrical shells according to a layerwise theory [J]. Computers and Structures, 1993, 49(4): 605 − 616. doi: 10.1016/0045-7949(93)90065-L
|
[25] |
周承倜. 弹性稳定理论[M]. 四川: 四川人民出版社, 1982.
ZHOU Chengti. Elastic stability theory [M]. Sichuan: Sichuan People's Publishing House, 1982. (in Chinese)
|
[26] |
TIMOSHENKO S P, GERE J M. Theory of elastic stability [M]. 2nd ed. New York: Dover Publications Inc, 2009.
|
[27] |
TIMOSHENKO S P, WOINOWSKY-KRIEGER S. Theory of plates and shells [M]. Singapore: McGraw-Hill Book Company, 1959.
|
[28] |
JOHNS D J. Self-weight-buckling of vertical circular cylindrical shells [J]. AIAA Journal, 2015, 11(3): 392 − 393.
|
[29] |
LIM C W, MA Y F. Computational p-element method on the effects of thickness and length on self-weight buckling of thin cylindrical shells via various shell theories [J]. Computational Mechanics, 2003, 31(5): 400 − 408. doi: 10.1007/s00466-003-0442-3
|
[30] |
吴静云, 赵阳. 外压作用下椭圆截面柱壳的弹性屈曲[J]. 工程力学, 2016, 33(6): 146 − 153.
WU Jingyun, ZHAO Yang. Elastic buckling of elliptical cylindrical shells under external pressure [J]. Engineering Mechanics, 2016, 33(6): 146 − 153. (in Chinese)
|
[31] |
王永亮. 含裂纹损伤圆弧曲梁弹性屈曲的有限元网格自适应分析[J]. 工程力学, 2021, 38(2): 8 − 15, 35. doi: 10.6052/j.issn.1000-4750.2020.03.0173
WANG Yongliang. Adaptive mesh refinement analysis of finite element method for elastic buckling of cracked circularly curved beams [J]. Engineering Mechanics, 2021, 38(2): 8 − 15, 35. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0173
|
[32] |
梁斌, 刘小宛, 李戎, 等. 充液环肋圆柱壳耦合振动的波动解[J]. 工程力学, 2016, 33(6): 9 − 14. doi: 10.6052/j.issn.1000-4750.2014.11.0940
LIANG Bin, LIU Xiaowan, LI Rong, et al. Study on vibration of fluid-filled cylindrical shells with ring-stiffener using wave propagation approach [J]. Engineering Mechanics, 2016, 33(6): 9 − 14. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.11.0940
|
[33] |
余杨, 李振眠, 余建星, 等. 穿越平移断层海底埋地管道屈曲失效分析[J]. 工程力学, 2022, 39(9): 242 − 256. doi: 10.6052/j.issn.1000-4750.2021.05.0391
YU Yang, LI Zhenmian, YU Jianxing, et al. Buckling failure analysis of subsea buried pipeline crossing strike-slip fault [J]. Engineering Mechanics, 2022, 39(9): 242 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0391
|
[34] |
李振眠, 余杨, 余建星, 等. 基于向量有限元的深水管道屈曲行为分析[J]. 工程力学, 2021, 38(4): 247 − 256. doi: 10.6052/j.issn.1000-4750.2020.06.0357
LI Zhenmian, YU Yang, YU Jianxing, et al. Buckling analysis of deepwater pipelines by vector form intrinsic finite element method [J]. Engineering Mechanics, 2021, 38(4): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0357
|
[35] |
宋广凯, 孙博华. 易拉罐在轴-侧-扭-内压联合作用下的屈曲地貌[J]. 力学学报, 2021, 53(2): 448 − 466. doi: 10.6052/0459-1879-20-315
SONG Guangkai, SUN Bohua. Buckling landscape of can under the combined action of axial compression-torsion-lateral poking-internal pressure [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 448 − 466. (in Chinese) doi: 10.6052/0459-1879-20-315
|
[36] |
喻莹, 徐新卓, 罗尧治. 基于Kresling折纸构型的空间结构可控失稳模式研究[J]. 工程力学, 2021, 38(8): 75 − 84. doi: 10.6052/j.issn.1000-4750.2020.08.0545
YU Ying, XU Xinzhuo, LUO Yaozhi. Programmable instability of spatial structures based on Kresling origami [J]. Engineering Mechanics, 2021, 38(8): 75 − 84. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0545
|
[37] |
KOITER W T. On the stability of elastic equilibrium [M]. Washington, D.C.: National Aeronautics and Space Administration, 1967.
|
[38] |
SUN B H. Buckling problems of sandwich shells [R]. Netherlands: Delft University of Technology, 1992.
|
[39] |
YEH K Y, SUN B H, RIMROTT F P J. Buckling of imperfect sandwich cones under axial compression-equivalent-cylinder approach: Part I [J]. Technische Mechanik, 1994, 15(1): 1 − 12.
|
[40] |
YEH K Y, SUN B H, RIMROTT F P J. Buckling of imperfect sandwich cones under axial compression-equivalent-cylinder approach: Part II [J]. Technische Mechanik, 1995, 15(2): 1 − 12.
|
[41] |
SUN B. On the buckling of structures [J]. Technische Mechanik, 1995, 15(2): 129 − 140.
|
[42] |
JIAO Peng, CHEN Zhiping, MA He, et al. Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 1: Experimental study [J]. Thin-Walled Structures, 2021, 166: 108118. doi: 10.1016/j.tws.2021.108118
|
[43] |
JIAO Peng, CHEN Zhiping, MA He, et al. Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 1: Numerical study [J]. Thin-Walled Structures, 2021, 169: 108330. doi: 10.1016/j.tws.2021.108330
|
[44] |
EVKIN A. Analytical model of local buckling of axially compressed cylindrical shells [J]. Thin-Walled Structures, 2021, 168: 108261. doi: 10.1016/j.tws.2021.108261
|