Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LIU Xuan-ting, SUN Bo-hua. ANALYSIS OF MECHANICAL PERFORMANCES OF CYLINDER IN 3D CONCRETE PRINTING PROCESSES[J]. Engineering Mechanics, 2023, 40(1): 180-189, 200. doi: 10.6052/j.issn.1000-4750.2021.08.0605
Citation: LIU Xuan-ting, SUN Bo-hua. ANALYSIS OF MECHANICAL PERFORMANCES OF CYLINDER IN 3D CONCRETE PRINTING PROCESSES[J]. Engineering Mechanics, 2023, 40(1): 180-189, 200. doi: 10.6052/j.issn.1000-4750.2021.08.0605


doi: 10.6052/j.issn.1000-4750.2021.08.0605
  • Received Date: 2021-08-05
  • Rev Recd Date: 2021-10-21
  • Available Online: 2021-11-02
  • Publish Date: 2023-01-01
  • Because of the advantages in rapid manufacturing, 3D concrete printing (3DCP) technology has developed rapidly in the past decades. However, there are still many problems to be solved in the printing process. For example, the current related studies have not established a mechanical model that can accurately predict and analyze 3DCP cylinders. Two failure mechanisms of 3DCP cylindrical shell, namely elastic buckling and plastic failure, are analyzed by using Goldenveizer-Novozhilov shell theory and adding printing process parameters, including printing rate, curing characteristics of printing materials, geometric characteristics of 3DCP cylinders and the effect of dead weight. On this basis, the competitive relationship between elastic buckling and plastic collapse of cylindrical shell vertical wall is described. The results of parameter model and finite element simulation were compared with the existing experiments, which verify that the proposed model can better predict the failure length and failure form of 3DCP cylinders, and provide a theoretical guidance for finding the optimal printing parameters set.
  • loading
  • [1]
    KHOSHNEVIS B, DUTTON R. Innovative rapid prototyping process makes large sized, smooth surfaced complex shapes in a wide variety of materials [J]. Materials Technology, 1998, 13(2): 53 − 56. doi: 10.1080/10667857.1998.11752766
    BUSWELL R, LEAL DE SILVA W, JONES S, et al. 3D printing using concrete extrusion: A roadmap for research [J]. Cement and Concrete Research, 2018, 112: 37 − 49. doi: 10.1016/j.cemconres.2018.05.006
    WONG K V, HERNANDEZ A. A Review of Additive Manufacturing [J]. Isrn Mechanical Engineering, 2012, 2012: 30 − 38.
    CESARETTI G, DINI E, DE KESTELIER X, et al. Building components for an outpost on the lunar soil by means of a novel 3D printing technology [J]. Acta Astronautica, 2014, 93: 430 − 450. doi: 10.1016/j.actaastro.2013.07.034
    MECHTCHERINE V, BOS F P, PERROT A, et al. Extrusion-based additive manufacturing with cement-based materialsc production steps, processes, and their underlying physics: A review [J]. Cement and Concrete Research, 2020, 132: 106037. doi: 10.1016/j.cemconres.2020.106037
    DE SCHUTTER G, LESAGE K, MECHTCHERINE V, et al. Vision of 3D printing with concrete technical, economic and environmental potentials [J]. Cement and Concrete Research, 2018, 112: 25 − 36. doi: 10.1016/j.cemconres.2018.06.001
    MA G, WANG L, JU Y. State-of-the-art of 3D printing technology of cementitious materialan emerging technique for construction [J]. Science China Technological Sciences, 2018, 61(4): 475 − 495. doi: 10.1007/s11431-016-9077-7
    FATEMEH H, FARHAD A. Additive manufacturing of cementitious composites: Materials, methods, potentials, and challenges [J]. Construction and Building Materials, 2019, 218: 582 − 609. doi: 10.1016/j.conbuildmat.2019.05.140
    MOHAN M K, RAHUL A, DE SCHUTTER G, et al. Extrusion based concrete 3D printing from a material perspective: A state-of-the-art review [J]. Cement and Concrete Composites, 2021, 115: 103855. doi: 10.1016/j.cemconcomp.2020.103855
    ROUSSEL N, SPANGENBERG J, WALLEVIK J, et al. Numerical simulations of concrete processing: From standard formative casting to additive manufacturing [J]. Cement and Concrete Research, 2020, 135: 106075. doi: 10.1016/j.cemconres.2020.106075
    NAIR S, PANDA S, SANTHANAM M, et al. A critical examination of the influence of material characteristics and extruder geometry on 3D printing of cementitious binders [J]. Cement and Concrete Composites, 2020, 112: 103671. doi: 10.1016/j.cemconcomp.2020.103671
    COMMINAL R, SILVA W, ANDERSEN T J, et al. Modelling of 3D concrete printing based on computational fluid dynamics [J]. Cement and Concrete Research, 2020, 138: 106256. doi: 10.1016/j.cemconres.2020.106256
    COMMINAL R, SERDECZNY M P, PEDERSEN D B, et al. Motion planning and numerical simulation of material deposition at corners in extrusion additive manufacturing [J]. Additive Manufacturing, 2019, 29: 100753. doi: 10.1016/j.addma.2019.06.005
    KRUGER J, ZERANKA S, ZIJL G V. A rheology-based quasi-static shape retention model for digitally fabricated concrete [J]. Construction and Building Materials, 2020, 254: 119241. doi: 10.1016/j.conbuildmat.2020.119241
    KRUGER J, CHO S, ZERANKA S, et al. 3D concrete printer parameter optimisation for high rate digital construction avoiding plastic collapse [J]. Composites Part B: Engineering, 2020, 183: 107660. doi: 10.1016/j.compositesb.2019.107660
    JAYATHILAKA R, RAJEEV P, SANJAYAN J G. Yield stress criteria to assess the buildability of 3D concrete printing [J]. Construction and Building Materials, 2020, 240: 117989. doi: 10.1016/j.conbuildmat.2019.117989
    WOLFS R, BOS F P, SALET T. Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing [J]. Cement and Concrete Research, 2018, 106: 103 − 116. doi: 10.1016/j.cemconres.2018.02.001
    WOLFS R, BOS F P, SALET T. Triaxial compression testing on early age concrete for numerical analysis of 3D concrete printing [J]. Cement and Concrete Composites, 2019, 104: 103344. doi: 10.1016/j.cemconcomp.2019.103344
    CASAGRANDEA L, ESPOSITOB L, MENNA C, et al. Effect of testing procedures on buildability properties of 3D-printable concrete [J]. Construction and Building Materials, 2020, 245: 118286. doi: 10.1016/j.conbuildmat.2020.118286
    SUIKER A S J. Mechanical performance of wall structures in 3D printing processes: Theory, design tools and experiments [J]. International Journal of Mechanical Sciences, 2018, 137: 145 − 170. doi: 10.1016/j.ijmecsci.2018.01.010
    WOLFS R, SUIKER A. Structural failure during extrusion-based 3D printing processes [J]. International Journal of Advanced Manufacturing Technology, 2019, 104(1/2/3/4): 1 − 20. doi: 10.1007/s00170-018-2331-0
    OOMS T, VANTYGHEM G, COILE R V, et al. A parametric modelling strategy for the numerical simulation of 3D concrete printing with complex geometries [J]. Additive Manufacturing, 2020, 38: 101743.
    龙驭球, 崔京浩, 袁驷, 等. 力学筑梦中国[J]. 工程力学, 2018, 35(1): 1 − 54. doi: 10.6052/j.issn.1000-4750.2017.09.1000

    LONG Yuqiu, CUI Jinghao, YUAN Si, et al. Build ‘Chinese Dream’ with the assistance of mechanics [J]. Engineering Mechanics, 2018, 35(1): 1 − 54. (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.09.1000
    REDDY J N, JR J H S. General buckling of stiffened circular cylindrical shells according to a layerwise theory [J]. Computers and Structures, 1993, 49(4): 605 − 616. doi: 10.1016/0045-7949(93)90065-L
    周承倜. 弹性稳定理论[M]. 四川: 四川人民出版社, 1982.

    ZHOU Chengti. Elastic stability theory [M]. Sichuan: Sichuan People's Publishing House, 1982. (in Chinese)
    TIMOSHENKO S P, GERE J M. Theory of elastic stability [M]. 2nd ed. New York: Dover Publications Inc, 2009.
    TIMOSHENKO S P, WOINOWSKY-KRIEGER S. Theory of plates and shells [M]. Singapore: McGraw-Hill Book Company, 1959.
    JOHNS D J. Self-weight-buckling of vertical circular cylindrical shells [J]. AIAA Journal, 2015, 11(3): 392 − 393.
    LIM C W, MA Y F. Computational p-element method on the effects of thickness and length on self-weight buckling of thin cylindrical shells via various shell theories [J]. Computational Mechanics, 2003, 31(5): 400 − 408. doi: 10.1007/s00466-003-0442-3
    吴静云, 赵阳. 外压作用下椭圆截面柱壳的弹性屈曲[J]. 工程力学, 2016, 33(6): 146 − 153.

    WU Jingyun, ZHAO Yang. Elastic buckling of elliptical cylindrical shells under external pressure [J]. Engineering Mechanics, 2016, 33(6): 146 − 153. (in Chinese)
    王永亮. 含裂纹损伤圆弧曲梁弹性屈曲的有限元网格自适应分析[J]. 工程力学, 2021, 38(2): 8 − 15, 35. doi: 10.6052/j.issn.1000-4750.2020.03.0173

    WANG Yongliang. Adaptive mesh refinement analysis of finite element method for elastic buckling of cracked circularly curved beams [J]. Engineering Mechanics, 2021, 38(2): 8 − 15, 35. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.03.0173
    梁斌, 刘小宛, 李戎, 等. 充液环肋圆柱壳耦合振动的波动解[J]. 工程力学, 2016, 33(6): 9 − 14. doi: 10.6052/j.issn.1000-4750.2014.11.0940

    LIANG Bin, LIU Xiaowan, LI Rong, et al. Study on vibration of fluid-filled cylindrical shells with ring-stiffener using wave propagation approach [J]. Engineering Mechanics, 2016, 33(6): 9 − 14. (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.11.0940
    余杨, 李振眠, 余建星, 等. 穿越平移断层海底埋地管道屈曲失效分析[J]. 工程力学, 2022, 39(9): 242 − 256. doi: 10.6052/j.issn.1000-4750.2021.05.0391

    YU Yang, LI Zhenmian, YU Jianxing, et al. Buckling failure analysis of subsea buried pipeline crossing strike-slip fault [J]. Engineering Mechanics, 2022, 39(9): 242 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2021.05.0391
    李振眠, 余杨, 余建星, 等. 基于向量有限元的深水管道屈曲行为分析[J]. 工程力学, 2021, 38(4): 247 − 256. doi: 10.6052/j.issn.1000-4750.2020.06.0357

    LI Zhenmian, YU Yang, YU Jianxing, et al. Buckling analysis of deepwater pipelines by vector form intrinsic finite element method [J]. Engineering Mechanics, 2021, 38(4): 247 − 256. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.06.0357
    宋广凯, 孙博华. 易拉罐在轴-侧-扭-内压联合作用下的屈曲地貌[J]. 力学学报, 2021, 53(2): 448 − 466. doi: 10.6052/0459-1879-20-315

    SONG Guangkai, SUN Bohua. Buckling landscape of can under the combined action of axial compression-torsion-lateral poking-internal pressure [J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 448 − 466. (in Chinese) doi: 10.6052/0459-1879-20-315
    喻莹, 徐新卓, 罗尧治. 基于Kresling折纸构型的空间结构可控失稳模式研究[J]. 工程力学, 2021, 38(8): 75 − 84. doi: 10.6052/j.issn.1000-4750.2020.08.0545

    YU Ying, XU Xinzhuo, LUO Yaozhi. Programmable instability of spatial structures based on Kresling origami [J]. Engineering Mechanics, 2021, 38(8): 75 − 84. (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.08.0545
    KOITER W T. On the stability of elastic equilibrium [M]. Washington, D.C.: National Aeronautics and Space Administration, 1967.
    SUN B H. Buckling problems of sandwich shells [R]. Netherlands: Delft University of Technology, 1992.
    YEH K Y, SUN B H, RIMROTT F P J. Buckling of imperfect sandwich cones under axial compression-equivalent-cylinder approach: Part I [J]. Technische Mechanik, 1994, 15(1): 1 − 12.
    YEH K Y, SUN B H, RIMROTT F P J. Buckling of imperfect sandwich cones under axial compression-equivalent-cylinder approach: Part II [J]. Technische Mechanik, 1995, 15(2): 1 − 12.
    SUN B. On the buckling of structures [J]. Technische Mechanik, 1995, 15(2): 129 − 140.
    JIAO Peng, CHEN Zhiping, MA He, et al. Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 1: Experimental study [J]. Thin-Walled Structures, 2021, 166: 108118. doi: 10.1016/j.tws.2021.108118
    JIAO Peng, CHEN Zhiping, MA He, et al. Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 1: Numerical study [J]. Thin-Walled Structures, 2021, 169: 108330. doi: 10.1016/j.tws.2021.108330
    EVKIN A. Analytical model of local buckling of axially compressed cylindrical shells [J]. Thin-Walled Structures, 2021, 168: 108261. doi: 10.1016/j.tws.2021.108261
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (351) PDF downloads(69) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint